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Abstract This chapter presents a constructive derivation of HDG methods for
convection-diffusion-reaction equation using the Rankine-Hugoniot condition. This
is possible due to the fact that, in the first order form, convection-diffusion-reaction
equation is a hyperbolic system. As such it can be discretized using the standard
upwind DG method. The key is to realize that the Rankine-Hugoniot condition nat-
urally provides an upwind HDG framework. The chief idea is to first break the
uniqueness of the upwind flux across element boundaries by introducing single-
valued new trace unknowns on the mesh skeleton, and then re-enforce the unique-
ness via algebraic conservation constraints. Essentially, the HDG framework is a
redesign of the standard DG approach to reduce the number of coupled unknowns.
In this work, an upwind HDG method with one trace unknown is systematically con-
structed, and then extended to a family of penalty HDG schemes. Various existing
HDG methods are rediscovered using the proposed framework.

1 Introduction

The high-order discontinuous Galerkin (DG) method was originally developed by
Reed and Hill [2] for the neutron transport equation, first analyzed in [3, 4], and
then has been extended to other problems governed by partial differential equations
(PDEs) [11]. Roughly speaking, DG combines advantages of classical finite volume
and finite element methods. However, for steady state problems or time-dependent
ones that require implicit time-integrators, DG methods typically have many more
(coupled) unknowns compared to the other existing numerical approaches, and
hence more expensive in general.
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2 HDG Methods for Convection-Diffusion-Reaction Equations

Recently, Cockburn and his coworkers have introduced a hybridizable (also
known as hybridized) discontinuous Galerkin (HDG) methods for various type of
PDEs including Poisson equation [9, 12], and convection-diffusion equation [8, 13].
The beauty of the HDG method is that it reduces the number of coupled unknowns
substantially while retaining all other attractive properties of the DG counterpart.
The coupled unknowns are in fact unknown traces introduced on the mesh skeleton,
i.e. the faces, to hybridize the numerical flux. Once they are solved for, the usual
DG unknowns can be recovered in an element-by-element fashion, completely in-
dependent of each other. Thus, the HDG methods are well suited for current and
future supercomputing systems. Existing HDG constructions however vary from
one type of PDE to another, though they do share some similarities. Moreover, they
are parameter-dependent method. Consequently, practitioners may be wary of de-
riving/applying the HDG approach to a new PDE.

In this chapter we seek to develop a systematic and constructive hybridized dis-
continuous Galerkin (HDG) methods for partial differential equations. For con-
creteness and clarity of the exposition we choose to present our development for
convection-diffusion-reaction equation, though it can be extended to other PDEs.
This paper is a continuation of our recent effort [7] on unifying the construction
and theory HDG method. Unlike [7], in which we construct HDG schemes from
the Godunov approach with upwind flux, in this work we discover a new way to
unify HDG methods using the Rankine-Hugoniot jump condition. In fact, we shall
show that Rankine-Hugoniot jump condition is, perhaps, the most natural way to
construct HDG schemes. In the following, we provide step-by-step the construction
of our new unified HDG framework and we refer the readers to [9, 12, 8, 13, 7] for
a complete description of HDG methodology, its novelties, and its efficiency.

2 Upwind HDG method and its variants for
convection-diffusion-reaction equation

In this section we will systematically devise an upwind HDG scheme for convection-
diffusion-reaction in the following first order form

ε
−1

σ +∇u = 0 in Ω , and ∇ ·σ +∇ · (β ·u)+νu = f in Ω (1)

where Ω ⊂Rd , and we take d = 3 for concreteness; the velocity field β is assumed to
be continuous; ε is the diffusion coefficient; ν is the reaction parameter; and f is the
forcing term. Since the boundary condition plays no role in the basic construction
and understanding of our upwind HDG framework, it will be ignored.

If we define u := [σ ,u] we can rewrite (1) in a more compact form as

∇ ·F (u)+Cu = f, in Ω , (2)
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where f := [0, f ], and C is a 4× 4 matrix with C(1,1) = C(2,2) = C(3,3) = ε ,
C(4,4) = ν and C (i, j) = 0 otherwise. Here, the flux tensor F is given by F (u) :=
A u and A is a tensor with three components defined as

A 1 :=


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 β

1

 , A 2 :=


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 β

2

 , and A 3 :=


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 β

3

 .

Now, let n :=
[
n1,n2,n3

]
be an arbitrary unit vector, we observe that

A := A ·n =


0 0 0 n1

0 0 0 n2

0 0 0 n3

n1 n2 n3 β ·n

 (3)

has four eigenvalues [c1,c2,c2,c3]:

[c1,c2,c2,c3] :=

β ·n
2
−

√
|β ·n|2 +4

2
,0,0,

β ·n
2

+

√
|β ·n|2 +4

2

 .

It can be inspected that the eigen-values are real and eigen-vectors are independent.
Consequently, (1) is a steady state hyperbolic system (see, e.g., [1] for definition
of hyperbolicity), though the original convection-diffusion-reaction is not purely
hyperbolic (in fact elliptic if β = 0). As such, it can be discretized and solved using
upwind numerical methods such as DG.

The goal of this section is to provide a systematic construction of an upwind
HDG framework for convection-diffusion-reaction equation (1). Let us begin by in-
troducing some notations and conventions. The domain Ω is partitioned into Nel
non-overlapping elements K j, j = 1, . . . ,Nel with Lipschitz boundaries such that
Ωh := ∪Nel

j=1K j and Ω = Ω h. We denote the skeleton of the mesh by Eh := ∪Nel
j=1∂K j;

it is the set of all (uniquely defined) faces e. We conventionally identify the normal
vector n− on the boundary ∂K of the element K under consideration (also denoted
as K−) and n+ =−n− as the normal of the boundary of a neighboring element (also
denoted as K+). On the other hand, we use n to denote either n− or n+ in an expres-
sion that is valid for both cases, and this convention is also used for other quantities
(restricted) on e ∈ Eh. For the sake of convenience, we denote by E ∂

h the sets of all
boundary faces and define E o

h := Eh \E ∂
h the set of all interior faces.

For simplicity in writing we define (·, ·)K as the L2-inner product on a domain
K ∈Rd and 〈·, ·〉K as the L2-inner product on a domain K if K ∈Rd−1. We shall use
bold-face lowercase/uppercase letters for vector-valued functions and in that case
the inner product is defined as (u,v)K := ∑

m
i=1
(
ui,vi

)
K , and similarly as 〈u,v〉K :=

∑
m
i=1
〈
ui,vi

〉
K , where m is the number of components (ui, i = 1, . . . ,m) of u. We also

employ upper case calligraphic letter, e.g. F , to denote tensors. It is our convention
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that superscripts are used to denote the components of vector, matrix, and tensor.
We shall not distinguish row and column vectors in what follows.

We define P p (K) as the space of polynomials of degree at most p on the domain
K. Next, we introduce two discontinuous piecewise polynomial spaces

Vh (Ωh) :=
{

v ∈
[
L2 (Ω)

]m
: v|K ∈ [P p (K)]m ,∀K ∈Ωh

}
,

Λh (Eh) :=
{

λ ∈ L2 (Eh) : λ |e ∈P p (e) ,∀e ∈ Eh
}

,

and similarly for Vh (K), and Λ h (e) by replacing Ωh with K and Eh with e. If m = 1,
i.e. scalar-valued functions, we define

Vh (Ωh) :=
{

v ∈ L2 (Ω) : v|K ∈P p (K) ,∀K ∈Ωh
}

.

From now on we conventionally use u for DG solution. We would like to find
local finite element solution u ∈ Vh (K) on each element K ∈Ωh. To that end, mul-
tiplying (2) by v and integrating by parts we have

−(F (u) ,∇v)K + 〈F (u) ·n,v〉
∂K +(Cu,v)K = (f,v)K , ∀v ∈ Vh (K). (4)

At this point, the flux F (u) ·n on e∈ ∂K is not well-defined since the traces of both
u− of element K− and u+ of element K+ co-exist on e. Godunov’s type methods
[5] resolves this by introducing some (typically upwind, see e.g. [1, 6]) numerical
flux F ∗ (u−,u+) to replace F (u) on the boundary term in (4) so that (4) becomes

−(F (u) ,∇v)K +
〈
F ∗ (u−,u+) ·n,v

〉
∂K +(Cu,v)K = (f,v)K . (5)

It should be pointed out that for simplicity in writing we have ignored the fact (5)
must hold for all test functions v ∈ Vh (K); to the end of the chapter, this should be
implicitly understood.

It is the upwind numerical flux F ∗ that couples local unknowns on elements K+

and K− that share a face e ∈ ∂K. Consequently, local unknowns on all elements are
coupled (for steady state problems or time-dependent problem with implicit time-
integrators), and they must be solved together. This leads to the “usual complaint”
that DG has so many coupled unknowns, and hence is expensive, though it has many
attractive properties.

What we are going to do next is to remove this coupling by introducing new
trace unknowns that live on the mesh skeleton. The beauty of this approach is that
the actual globally coupled unknowns are those newly introduced trace unknowns,
and hence the resulting system is substantially smaller and sparser. Once the trace
unknowns are computed, the local DG unknown u is computed locally element-
by-element independent of each other. We shall show that the Rankine-Hugoniot
condition (see, e.g. [1]) provides all the necessary ingredients for accomplishing
this decoupling task. To that end, let us sketch in Figure 1 the wave structure of the
Riemann problem for the first order PDE system (1) along the normal direction of
the interface between K− and K+. Here, τ is the pseudo-time.
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Fig. 1 The wave structure
in the Riemann problem for
first order form of convection-
diffusion-reaction equation
(1) with pseudo-time τ .

n
−

τ

c3
c1 c2

u
+

u
−

ũ
+

ũ
−

Applying the Rankine-Hugoniot condition across each wave we obtain(
A − ·n−

)
ũ−−

(
A − ·n−

)
u− = c1

(
ũ−−u−

)
, (6a)(

A + ·n−
)

ũ+−
(
A − ·n−

)
ũ− = 0, (6b)(

A + ·n−
)

u+−
(
A + ·n−

)
ũ+ = c3

(
u+− ũ+) . (6c)

On the other hand, from definition of A and the continuity of β we have

A − = A + = A , and (A ·n)u = [un,σ ·n+β ·nu]

which, together with (6b), imply

u∗ := ũ− = ũ+, and σ
∗ ·n := σ̃

− ·n = σ̃
+ ·n

where u∗ := [σ∗,u∗] is defined as the upwind state, which is also the Riemann solu-
tion in this case (see (10a) and (10b)). The upwind flux is then defined as

F ∗ ·n := (A ·n)u∗.

Using the definition of c1, c3, and A , we can rewrite both (6a) and (6c) in a general
form, referring to either K− or K+, as

F ∗ ·n =
[

un+ 1
2 (α−β ·n)(σ −σ∗)

β ·nu+σ ·n+ 1
2 (α−β ·n)(u−u∗)

]
, (7)

with α given by α :=
√
|β ·n|2 +4. Since the first three components of left hand

sides of (7) is a vector parallel to n, the tangent component of the corresponding
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vector consisting of the first three components of right hand side must vanish. This
observation allows us to rewrite the Rankine-Hugoniot conditions (7) as

F ∗ ·n =
[

un+ 1
2 (α−β ·n)(σ −σ∗) ·nn

β ·nu+σ ·n+ 1
2 (α−β ·n)(u−u∗)

]
. (8)

Since F ∗ ·n is the upwind flux, it obviously satisfies

[[F ∗ ·n]] = 0, (9)

where we have defined the “jump” operator as [[(·)]] := (·)−+(·)+. We also define
“average” operator as {{(·)}} := 1

2 [[(·)]].

Lemma 1. The following hold true:

i) The upwind state u∗ satisfies

u∗ = {{u}}+ β ·n
2α

[[un]] ·n+
1
α

[[σ ·n]], (10a)

σ
∗ ·n = {{σ}} ·n+

1
α

[[un]] ·n− β ·n
2α

[[σ ·n]], (10b)

ii) The upwind flux is given by

F ∗ ·n =
[

u∗n1, u∗n2, u∗n3, β ·nu+σ ·n+
1
2

(α−β ·n)(u−u∗)
]
, (11)

where

u∗ = u+
2
α

(σ −σ
∗) ·n+

β ·n
α

(u−u∗) . (12)

Proof. We know that the conservation (9) gives us four equations for the upwind
state u∗. Solving for u∗ and σ∗ ·n in terms of u and σ we obtain the desired result.
The second assertion immediately follows by substituting (10) into (8) and inspect-
ing that (12) is true.

Up to this point, we have used the exact upwind state u∗ and the upwind flux
F ∗ ·n to derive identities in Lemma 1. In particular, we have shown that the upwind
flux of the form (11) naturally arises from the Rankine-Hugoniot condition. The
appealing feature of this form is that the upwind flux depends on the DG unknowns
of only one side of a face e ∈ ∂K and the single-valued upwind state u∗. As such,
it is completely determined using only information from either side (K− or K+) of
the face e ∈ ∂K, as long as u∗ is (either exactly or approximately) provided. More
importantly, this in turn shows that we can solve equation (5) for u element-by-
element independent of each other. This observation suggests that we should treat
u∗ as the extra unknown and solve for it on the skeleton of the mesh instead of using
the upwind value which couples the local unknown u on elements. To signify this
step, let us rename u∗ to û and F ∗ to F̂ , i.e.,
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F̂ ·n =
[

ûn1, ûn2, ûn3, β ·nu+σ ·n+
1
2

(α−β ·n)(u− û)
]
, (13)

where û is the single-valued trace unknown on the mesh skeleton that needs to be
solve for.

An immediate question that arises is how to compute û. To answer this question,
we note that û is a new unknown that is introduced on ∂K so that (5) can be solved
in an element-by-element fashion. To ensure the well-posedness of our formulation,
we need to introduce an extra equation on ∂K. Clearly, at this point û is not the
upwind state and hence identity (9) is in general no longer satisfied for F̂ . It is
therefore natural to use (9) as the extra equation. This additional algebraic equation
ensures that what coming out from element K through its boundary ∂K must enter
the neighboring elements that share (part of) the boundary ∂K. This is the statement
of conservation and it is exactly conveyed by (9). Due to the single-valued nature of
û, the first three components of our HDG flux (13) automatically satisfy the conser-
vation condition (9). For the fourth one, enforcing (9) weakly is sufficient for local
conservation, i.e., ∀e ∈ E o

h :〈
[[β ·nu+σ ·n+

1
2

(α−β ·n)(u− û)]],µ

〉
e
= 0, ∀µ ∈Λh (e) . (14)

In summary, we define an upwind HDG method by hybridizing the upwind flux
of the standard DG scheme. In particular, it has the usual DG local unknown u and
the extra “trace” unknown û. These unknowns can be solver for using the global
conservation constraint (14) and the local solver (5) with F ∗ replaced by F̂ .

We now generalize our upwind HDG approach to a class of penalty HDG
schemes, a member of which is the upwind HDG itself. To that end, we first ob-
serve that u− û is the mismatch between the volume unknown restricted on the
mesh skeleton and trace unknown. This mismatch vanishes for the exact solution,
but converges to zero for the HDG solution as the mesh (or solution order) is refined.
This suggests that one can control the mismatch by introducing a penalty parameter
λ to form a penalized family of HDG fluxes as follows

F̂ ·n = [ûn1, ûn2, ûn3, β ·nu+σ ·n+λ (u− û)] . (15)

Clearly, when λ = 1
2 (α−β ·n) we recover the proposed upwind HDG scheme.

Next, we discuss the relation of our penalty HDG family, and hence upwind
HDG, with other existing HDG ones. It is necessary brief since a more detailed
discussion can be found in our previous work [7]. To begin, we observe that, for
general convection-diffusion-reaction problem (and similarly for pure convection
problem), if we replace λ by λ −β ·n in the HDG flux (15), we obtain

F̂ ·n = [ûn1, ûn2, ûn3, β ·nû+σ ·n+λ (u− û)] .

This is exactly the HDG scheme proposed in [8].
For the Poisson equation, our penalty HDG flux (15) simplifies to
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F̂ ·n = [ûn1, ûn2, ûn3, σ ·n+λ (u− û)] , (16)

which is exactly the HDG method originally proposed in [9]. It is important to point
out that since the differential part of the Helmholtz equation is the same as that of
the Poisson equation, HDG flux for the Helmholtz equation using our framework is
identical to (16). That is, we have also recovered the HDG scheme for Helmholtz
equation proposed in [10]. Finally, we refer to [7, 9, 8, 10, 12, 13] for a rigorous
analysis of all HDG methods presented in this chapter.

3 Conclusions

We have presented a constructive methodology to derive HDG methods for convection-
diffusion-reaction equation. In particular, we have shown that the Rankine-Hugoniot
condition, in its primitive form, is already a hybridization of the upwind flux. The
chief idea is to first break the uniqueness of the upwind flux across element bound-
aries by introducing single-valued trace unknowns on the mesh skeleton, and then
re-enforce the uniqueness via algebraic conservation constraints. We have devised
in details the construction of our upwind HDG method and extended it to a family
of penalty HDG schemes. The proposed framework allows one to rediscover many
existing HDG methods. Ongoing work is to apply the proposed framework to con-
structively derive HDG methods for other PDEs.
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