
Journal of Computational Physics 367 (2018) 295–321
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

An improved iterative HDG approach for partial differential
equations ✩

Sriramkrishnan Muralikrishnan a,∗, Minh-Binh Tran c, Tan Bui-Thanh a,b

a Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, TX 78712, USA
b The Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, TX 78712, USA
c Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 November 2017
Received in revised form 23 March 2018
Accepted 18 April 2018
Available online 23 April 2018

Keywords:
Iterative solvers
Schwarz methods
Hybridized Discontinuous Galerkin methods
Transport equation
Shallow water equation
Convection–diffusion equation

We propose and analyze an iterative high-order hybridized discontinuous Galerkin (iHDG)
discretization for linear partial differential equations. We improve our previous work [45]
in several directions: 1) the improved iHDG approach converges in a finite number of
iterations for the scalar transport equation; 2) it is unconditionally convergent for both the
linearized shallow water system and the convection–diffusion equation; 3) it has improved
stability and convergence rates; 4) we uncover a relationship between the number of
iterations and time stepsize, solution order, meshsize and the equation parameters. This
allows us to choose the time stepsize such that the number of iterations is approximately
independent of the solution order and the meshsize; and 5) we provide both strong and
weak scalings of the improved iHDG approach up to 16,384 cores. A connection between
iHDG and time integration methods such as parareal and implicit/explicit methods are
discussed. Extensive numerical results for linear (and nonlinear) PDEs are presented to
verify the theoretical findings.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Originally developed [1] for the neutron transport equation, first analyzed in [2,3], the discontinuous Galerkin (DG)
method has been studied extensively for virtually all types of partial differential equations (PDEs) [4–8]. This is due to the
fact that DG combines advantages of finite volume and finite element methods. As such, it is well-suited to problems with
large gradients including shocks and with complex geometries, and large-scale simulations demanding parallel implemen-
tations. In spite of these advantages, DG methods for steady state and/or time-dependent problems that require implicit
time-integrators are more expensive in comparison to other existing numerical methods since they typically have many
more (coupled) unknowns.

As an effort to mitigate the computational expense associated with DG methods, the hybridized (also known as hy-
bridizable) discontinuous Galerkin (HDG) methods are introduced for various types of PDEs including Poisson-type equation
[9–14], Stokes equation [15,16], Euler and Navier–Stokes equations, wave equations [17–23], to name a few. In [24–26], we
have proposed an upwind HDG framework that provides a unified and a systematic construction of HDG methods for a
large class of PDEs. We note that the weak Galerkin methods in [27–30] share many similar advantages with HDG.

✩ This research was partially supported by DOE grants DE-SC0010518 and DE-SC0011118, NSF Grants NSF-DMS1620352 and RNMS (Ki-Net) 1107444. We
are grateful for the supports.

* Corresponding author.
E-mail address: sriramkrishnan @utexas .edu (S. Muralikrishnan).
https://doi.org/10.1016/j.jcp.2018.04.033
0021-9991/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2018.04.033
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:sriramkrishnan@utexas.edu
https://doi.org/10.1016/j.jcp.2018.04.033
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2018.04.033&domain=pdf

296 S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321
Besides the usual DG volume unknown, HDG methods introduce extra single-valued trace unknowns on the mesh skele-
ton to reduce the number of coupled degrees of freedom and to promote further parallelism. This is accomplished via a
Schur complement approach in which the volume unknowns on each elements are independently eliminated in parallel to
provide a system of equations involving only the trace unknowns. Moreover, the trace system is substantially smaller and
sparser compared to a standard DG linear system. Once the trace unknowns are solved for, the volume unknowns can be
recovered in an element-by-element fashion, completely independent of each other. For small and medium sized problems
the above approach is popular. However, for practically large-scale applications, where complex and high-fidelity simulations
involving features with a large range of spatial and temporal scales are necessary, the trace system is still a bottleneck. In
this case, matrix-free iterative solvers/preconditioners [31–33] which converge in reasonably small number of iterations are
required.

Schwarz-type domain decomposition methods (DDMs) have become popular during the last three decades as they pro-
vide efficient algorithms to parallelize and to solve PDEs [34–36]. Schwarz waveform relaxation methods and optimized
Schwarz methods [37–43] are among the most important subclasses of DDMs since they can be adapted to the underlying
physics, and thus lead to powerful parallel solvers for challenging problems. While, scalable iterative solvers/preconditioners
for the statically condensed trace system can be developed [44], DDMs and HDG have a natural connection which can be
exploited to create efficient parallel solvers. We have developed and analyzed one such solver namely iterative HDG (iHDG)
in our previous work [45] for elliptic, scalar and system of hyperbolic equations. Independent and similar efforts for elliptic
and parabolic equations have been proposed and analyzed in [46,39,47].

In the following, we discuss in section 2 an upwind HDG framework [24] for a general class of PDEs and also our
notations used in this paper. The iHDG algorithm and significant improvements over our previous work [45] are explained
in section 3. The convergence of the new iHDG algorithm for the scalar and for system of hyperbolic PDEs is proved in
section 4 using an energy approach. In section 5 we applied the iHDG approach for the convection–diffusion PDE considered
in the first order form. The convergence and the scaling of the number of iHDG iterations with meshsize and solution order
are derived. Section 6 presents various steady and time dependent examples, in both two and three spatial dimensions, to
support the theoretical findings. We also present both strong and weak scaling results of our algorithm up to 16,384 cores
in section 6. We finally conclude the paper in section 7.

2. Upwind HDG framework

In this section we briefly review the upwind HDG framework for a general system of linear PDEs and introduce necessary
notations. To begin, let us consider the following system of first order PDEs

∂tu +
d∑

k=1

∂kFk (u) + Cu := ∂tu +
d∑

k=1

∂k (Aku) + Cu = f, in �, (1)

where d is the spatial dimension (which, for the clarity of the exposition, is assumed to be d = 3 whenever a particular
value of the dimension is of concern, but the result is also valid for d = {1,2}), Fk the kth component of the flux vector (or
tensor) F, u the unknown solution with values in Rm , and f the forcing term. For simplicity, we assume that the matrices
Ak and C are continuous across �. Here, ∂k stands for the kth partial derivative, in which k represents the kth component
of a vector/tensor, and ∂t is the temporal derivative. We adopt a semi-discretization strategy in which the HDG method is
employed to discretize the spatial derivatives, while standard discretizations such as backward Euler and/or Crank–Nicolson
are used for the temporal derivative.

Let us start with notations and conventions. We partition � ∈ R
d , an open and bounded domain, into Nel non-

overlapping elements K j, j = 1, . . . , Nel with Lipschitz boundaries such that �h := ∪Nel
j=1 K j and � = �h . The meshsize h

is defined as h := max j∈{1,...,Nel} diam
(

K j
)
. We denote the skeleton of the mesh by Eh := ∪Nel

j=1∂ K j , the set of all (uniquely
defined) faces e. We conventionally identify n− as the outward normal vector on the boundary ∂ K of element K (also
denoted as K −) and n+ = −n− as the outward normal vector of the boundary of a neighboring element (also denoted as
K +). Furthermore, we use n to denote either n− or n+ in an expression that is valid for both cases, and this convention is
also used for other quantities (restricted) on a face e ∈ Eh . For convenience, we denote by E∂

h the sets of all boundary faces
on ∂�, by Eo

h := Eh \ E∂
h the set of all interior faces, and ∂�h := {∂ K : K ∈ �h}.

For simplicity in writing we define (·, ·)K as the L2-inner product on a domain K ∈R
d and 〈·, ·〉K as the L2-inner product

on a domain K if K ∈ R
d−1. We shall use ‖·‖K := ‖·‖L2(K) as the induced norm for both cases and the particular value of

K in a context will indicate the inner product from which the norm is coming. We also denote the ε-weighted norm of a
function u as ‖u‖ε,K := ∥∥√εu

∥∥
K for any positive ε. We shall use boldface lowercase letters for vector-valued functions and

in that case the inner product is defined as (u,v)K :=∑m
i=1 (ui,vi)K , and similarly 〈u,v〉K :=∑m

i=1 〈ui,vi〉K , where m is the
number of components (ui, i = 1, . . . , m) of u. Moreover, we define (u,v)�h

:=∑
K∈�h

(u,v)K and 〈u,v〉Eh
:=∑

e∈Eh
〈u,v〉e

whose induced (weighted) norms are clear, and hence their definitions are omitted. We employ boldface uppercase letters,
e.g. L, to denote matrices and tensors. We conventionally use u (v and û) for the numerical solution and ue for the exact
solution.

S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321 297
We denote by P p (K) the space of polynomials of degree at most p on a domain K . Next, we introduce two discontinu-
ous piecewise polynomial spaces

Vh (�h) :=
{

v ∈
[

L2 (�h)
]m : v|K ∈ [P p (K)

]m
,∀K ∈ �h

}
,

�h (Eh) :=
{
λ ∈

[
L2 (Eh)

]m : λ|e ∈ [P p (e)
]m

,∀e ∈ Eh

}
,

and similar spaces Vh (K) and �h (e) on K and e by replacing �h with K and Eh with e. For scalar-valued functions, we
denote the corresponding spaces as

Vh (�h) :=
{

v ∈ L2 (�h) : v|K ∈ P p (K) ,∀K ∈ �h

}
,

�h (Eh) :=
{
λ ∈ L2 (Eh) : λ|e ∈ P p (e) ,∀e ∈ Eh

}
.

Following [24], an upwind HDG discretization for (1) in each element K involves the DG local unknown u and the extra
“trace” unknown û such that

(∂tu,v)K − (F (u) ,∇v)K +
〈
F̂
(
u, û

) · n,v
〉
∂ K

+ (Cu,v)K = (f,v)K , (2a)〈[[
F̂
(
u, û

) · n
]]

,μ
〉
e
= 0, ∀e ∈ Eo

h , (2b)

where we have defined the “jump” operator for any quantity (·) as [[(·)]] := (·)− +(·)+ . We also define the “average” operator
{{(·)}} via 2 {{(·)}} := [[(·)]]. For simplicity, we have ignored the fact that equations (2a), (2b) must hold for all test functions
v ∈ Vh (K) and μ ∈ �h (e) respectively. This is implicitly understood throughout the paper. Here, the HDG flux is defined as

F̂ · n = F (u) · n + |A| (u − û
)
, (3)

with the matrix A :=∑d
k=1 Aknk = RSR−1, and |A| := R |S|R−1. Here nk is the kth component of the outward normal vector

n and |S| represents a matrix obtained by taking the absolute value of the main diagonal of the matrix S. We have assumed
that A admits an eigen-decomposition, and this is valid for a large class of PDEs of Friedrichs’ type [48].

The typical procedure for computing HDG solution requires three steps. We first solve (2a) for the local solution u
as a function of û. It is then substituted into the conservative algebraic equation (2b) on the mesh skeleton to solve
for the unknown û. Finally, the local unknown u is computed, as in the first step, using û from the second step.
Since the number of trace unknowns û is less than the DG unknowns u [26], HDG is more advantageous. For large-
scale problems, however, the trace system on the mesh skeleton could be large and iterative solvers are necessary. In
the following we construct an iterative solver that takes advantage of the HDG structure and the domain decomposition
method.

3. iHDG methods

To reduce the cost of solving the trace system, our previous effort [45] is to break the coupling between û and u in
(2) by iteratively solving for u in terms of û in (2a), and û in terms of u in (2b). We name this approach iterative HDG
(iHDG) method, and now let us call it iHDG-I to distinguish it from the approach developed in this paper. From a linear
algebra point of view, iHDG-I can be considered as a block Gauss–Seidel approach for the system (2) that requires only
independent element-by-element and face-by-face local solves in each iteration. However, unlike conventional Gauss–Seidel
schemes which are purely algebraic, the convergence of iHDG-I [45] does not depend on the ordering of unknowns. From
the domain decomposition point of view, thanks to the HDG flux, iHDG can be identified as an optimal Schwarz method in
which each element is a subdomain. Using an energy approach, we have rigorously shown the convergence of iHDG-I for
the transport equation, the linearized shallow water equation and the convection–diffusion equation [45]. For the sake of
completeness we provide the iHDG-I algorithm below. The approximation of the HDG solution at the (k + 1)th iteration is
governed by the local equation (2a) as(

∂tuk+1,v
)

K
−
(

F
(

uk+1
)

,∇v
)

K
+
〈
F
(

uk+1
)

· n + |A| (uk+1 − ûk),v
〉
∂ K

+
(

Cuk+1,v
)

K
= (f,v)K , (4)

where the weighted trace |A| ûk is computed using information at the k-iteration via the conservation condition (2b), i.e.,〈
|A| ûk,μ

〉
∂ K

=
〈{{

|A| uk
}}

+
{{

F
(

uk
)

· n
}}

,μ
〉
∂ K

. (5)

Algorithm 1 summarizes the iHDG-I approach. Nevertheless, a number of questions need to be addressed for the iHDG-I approach.
First, with the upwind flux it theoretically takes infinite number of iterations to converge for the scalar transport equation.
Second, it is conditionally convergent for the linearized shallow water system; in particular, it blows up for fine meshes

298 S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321
Algorithm 1 The iHDG-I approach.
Ensure: Given initial guess u0, compute the weighted trace |A| û0 using (5).
1: while not converged do
2: Solve the local equation (4) for uk+1 using the weighted trace |A| ûk .
3: Compute |A| ûk+1 using (5).
4: Check convergence. If yes, exit, otherwise set k = k + 1 and continue.
5: end while

and/or large time stepsizes. Furthermore, we have not been able to estimate the number of iterations as a function of
time stepsize, solution order, and meshsize. Third, it is also conditionally convergent for the convection–diffusion equation,
especially in the diffusion-dominated regime.

The iHDG approach constructed in this paper, which we call iHDG-II, overcomes all the aforementioned shortcomings.
In particular, it converges in a finite number of iterations for the scalar transport equation and is unconditionally con-
vergent for both the linearized shallow water system and the convection–diffusion equation. Moreover, compared to our
previous work [45], we provide several additional findings: 1) we make a connection between iHDG and the parareal
method, which reveals interesting similarities and differences between the two methods; 2) we show that iHDG can
be considered as a locally implicit method, and hence being somewhat in between fully explicit and fully implicit ap-
proaches; 3) for both the linearized shallow water system and the convection–diffusion equation, using an asymptotic
approximation, we uncover a relationship between the number of iterations and time stepsize, solution order, meshsize
and the equation parameters. This allows us to choose the time stepsize such that the number of iterations is ap-
proximately independent of the solution order and the meshsize; 4) we show that iHDG-II has improved stability and
convergence rates over iHDG-I; and 5) we provide both strong and weak scalings of the iHDG-II approach up to 16,384
cores.

We now present a detailed construction of the iHDG-II approach. We define the approximate solution for the volume
variables at the (k + 1)th iteration using the local equation (2a) as(

∂tuk+1,v
)

K
−
(

F
(

uk+1
)

,∇v
)

K
+
〈
F
(

uk+1
)

· n + |A| (uk+1 − ûk,k+1),v
〉
∂ K

+
(

Cuk+1,v
)

K
= (f,v)K , (6)

where the weighted trace |A| ûk,k+1 is computed from (2b) using volume unknown in element K at the (k + 1)th iteration,
i.e.

(
uk+1

)−
, and volume solution of the neighbors at the (k)th iteration, i.e.

(
uk
)+

:〈
2 |A| ûk,k+1,μ

〉
∂ K

=
〈
|A|

{(
uk+1

)− +
(

uk
)+}

,μ

〉
∂ K

+
〈
F
{(

uk+1
)−} · n− + F

{(
uk
)+} · n+,μ

〉
∂ K

. (7)

Algorithm 2 summarizes the iHDG-II approach. Compared to iHDG-I, iHDG-II improves the coupling between û and
u while still avoiding intra-iteration communication between elements. The trace û is double-valued during the course
of iterations for iHDG-II and in the event of convergence it becomes single valued upto a specified tolerance. Another
principal difference is that while the well-posedness of iHDG-I elemental local solves is inherited from the original HDG
counterpart, it has to be shown for iHDG-II. This is due to the new way of computing the weighted trace in (7) that in-
volves uk+1, and hence changing the structure of the local solves. Similar and independent work for HDG methods for
elliptic/parabolic problems have appeared in [46,39,47]. Here, we are interested in pure hyperbolic equations/systems and
convection–diffusion equations. Unlike existing matrix-based approaches, our convergence analysis is based on an energy
approach that exploits the variational structure of HDG methods. Moreover we provide, both rigorous and asymptotic, re-
lationships between the number of iterations and time stepsize, solution order, meshsize and the equation parameters. We
also make connection between our proposed iHDG-II approach with parareal and time integration methods. Last but not
least, our framework is more general: indeed it recovers the contraction factor results in [46] for elliptic equations as one
of the special cases.

Algorithm 2 The iHDG-II approach.
Ensure: Given initial guess u0, compute the weighted trace |A| û0,1 using (7).
1: while not converged do
2: Solve the local equation (6) for uk+1 using the weighted trace |A| ûk,k+1.
3: Compute |A| ûk+1,k+2 using (7).
4: Check convergence. If yes, exit, otherwise set k = k + 1 and continue.
5: end while

4. iHDG-II for linear hyperbolic PDEs

In this section we show that iHDG-II improves upon iHDG-I in many aspects discussed in section 3. The PDEs of interest
are (steady and time dependent) transport equation, and the linearized shallow water system [45].

S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321 299
4.1. Transport equation

Let us start with the (steady) transport equation

β · ∇ue = f in �, (8a)

ue = g on ∂�−, (8b)

where ∂�− is the inflow part of the boundary ∂�, and again ue denotes the exact solution. Note that β is assumed to be
continuous across the mesh skeleton.

Applying the iHDG-II Algorithm 2 to the upwind HDG discretization [24] for (8) we obtain the approximate solution uk+1

at the (k + 1)th iteration restricted on each element K via the following independent local solve:

−
((

uk+1
)−

,∇ · (βv)

)
K

+
〈
β · n− (uk+1

)− + |β · n|
{(

uk+1
)− − ûk,k+1

}
, v

〉
∂ K

= (f , v)K , (9)

where the weighted trace |β · n| ûk,k+1 is computed using information from the previous iteration and current iteration as

2 |β · n| ûk,k+1 =
{
β · n− (uk+1

)− + β · n+ (uk
)+}+ |β · n|

{(
uk+1

)− +
(

uk
)+}

. (10)

Next we study the convergence of the iHDG-II method (9), (10). Since (8) is linear, it is sufficient to show that the algo-
rithm converges to the zero solution for the homogeneous equation with zero forcing f = 0 and zero boundary condition
g = 0. Let us define ∂ K out as the outflow part of ∂ K , i.e. β · n− ≥ 0 on ∂ K out, and ∂ K in as the inflow part of ∂ K , i.e.
β · n− < 0 on ∂ K in. First, we will prove the well-posedness of the local solver (9).

Lemma 1. Assume −∇ · β ≥ α > 0, i.e. (8) is well-posed. Then the local solver (9) of the iHDG-II algorithm for the transport equation
is well-posed.

Proof. Taking v = (
uk+1

)−
in (9), substituting (10) in (9) and applying homogeneous forcing condition yield

−
((

uk+1
)−

,∇ ·
{
β
(

uk+1
)−})

K
+ 1

2

〈(
β · n− + |β · n|)(uk+1

)−
,
(

uk+1
)−〉

∂ K

= 1

2

〈(
β · n+ + |β · n|)(uk

)+
,
(

uk+1
)−〉

∂ K
. (11)

Since ((
uk+1

)−
,∇ ·

{
β
(

uk+1
)−})

K
=
((

uk+1
)−

,∇ · β
(

uk+1
)−)

K
+
((

uk+1
)−

,β · ∇
(

uk+1
)−)

K
,

integrating by parts the second term on the right hand side((
uk+1

)−
,∇ ·

{
β
(

uk+1
)−})

K
=
((

uk+1
)−

,∇ · β
(

uk+1
)−)

K

−
((

uk+1
)−

,∇ ·
{
β
(

uk+1
)−})

K
+
〈
β · n− (uk+1

)−
,
(

uk+1
)−〉

∂ K
,

yields the following identity, after rearranging the terms((
uk+1

)−
,∇ ·

{
β
(

uk+1
)−})

K
=
((

uk+1
)−

,
∇ · β

2

(
uk+1

)−)
K

+ 1

2

〈
β · n− (uk+1

)−
,
(

uk+1
)−〉

∂ K
. (12)

Using (12) in (11) we get∥∥∥∥(uk+1
)−∥∥∥∥2

−∇·β
2 ,K

+
∥∥∥∥(uk+1

)−∥∥∥∥2

|β·n|/2,∂ K
= 1

2

〈(
β · n+ + |β · n|)(uk

)+
,
(

uk+1
)−〉

∂ K
. (13)

In equation (13) all the terms on the left hand side are positive. Since
(
uk
)+

is the “forcing” for the local equation, by taking (
uk
)+ = 0 the only solution possible is

(
uk+1

)− = 0 and hence the local solver is well-posed. �
Having proved the well-posedness of the local solver we can now proceed to prove the convergence of Algorithm 2 for

the transport equation.

300 S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321
Theorem 1. Assume −∇ · β ≥ α > 0, i.e. (8) is well-posed. There exists J ≤ Nel such that the iHDG-II algorithm for the homogeneous
transport equation converges to the HDG solution in J iterations.

Proof. Using (13) from Lemma 1 and β · n+ > 0 on ∂ K in, β · n+ ≤ 0 on ∂ K out we can write∥∥∥∥(uk+1
)−∥∥∥∥2

−∇·β
2 ,K

+
∥∥∥∥(uk+1

)−∥∥∥∥2

|β·n|/2,∂ K
=
〈
|β · n|uk

ext,
(

uk+1
)−〉

∂ K in
, (14)

where uk
ext is either the physical boundary condition or the solution of the neighboring element that shares the same inflow

boundary ∂ K in.
Consider the set K1 of all elements K such that ∂ K in is a subset of the physical inflow boundary ∂�in on which we

have uk
ext = 0 for all k ∈ N. We obtain from (14) that∥∥∥∥(uk+1

)−∥∥∥∥2

−∇·β
2 ,K

+
∥∥∥∥(uk+1

)−∥∥∥∥2

|β·n|/2,∂ K
= 0, (15)

which implies u1 = 0 on K ∈K1, i.e. our iterative solver is exact on K ∈K1 at the first iteration.
Next, let us define �1

h := �h and

�2
h = �1

h\K1.

Consider the set K2 of all K in �2
h such that ∂ K in is either (possibly partially) a subset of the physical inflow boundary

∂�in or (possibly partially) a subset of the outflow boundary of elements in K1. This implies, on ∂ K in ∈K2, uk
ext = 0 for all

k ∈N \ {1}. Thus, ∀K ∈K2, we have∥∥∥∥(uk
)−∥∥∥∥2

−∇·β
2 ,K

+
∥∥∥∥(uk

)−∥∥∥∥2

|β·n|/2,∂ K
= 0, ∀k ∈N \ {1} , (16)

which implies u2 = 0 in K ∈K2, i.e. our iterative solver is exact on K ∈K2 at the second iteration.
Repeating the same argument, we can construct subsets K j ⊂ �h , on which the iterative solution on K ∈K j is the exact

HDG solution at the jth iteration. Since the number of elements Nel is finite, there exists J ≤ Nel such that �h = ∪ J
j=1K j .

It follows that the iHDG-II algorithm provides exact HDG solution on �h after J iterations. �
Remark 1. Compared to iHDG-I [45], which requires an infinite number of iterations to converge, iHDG-II needs finite
number of iterations for convergence. The key to the improvement is the stronger coupling between û and u by using (
uk+1

)−
in (7) instead of

(
uk
)−

. The proof of Theorem 1 also shows that iHDG-II automatically marches the flow, i.e., each
iteration yields the HDG solution exactly for a group of elements. Moreover, the marching process is automatic (i.e. does not
require an ordering of elements) and adapts to the velocity field β under consideration.

4.2. Time-dependent transport equation

In this section we first comment on a space–time formulation of the iHDG methods and compare it with the parareal
methods studied in [49] for the time-dependent scalar transport equation. Then we consider the semi-discrete version
of iHDG combined with traditional time integration schemes and compare it with the fully implicit and explicit DG/HDG
schemes.

4.2.1. Comparison of space–time iHDG and parareal methods for the scalar transport equation
Space–time finite element methods have been studied extensively for the past several years both in the context of

continuous and discontinuous Galerkin methods [50–54] and HDG methods [55]. Parareal methods, on the other hand, were
first introduced in [56] and various modifications have been proposed and studied (see [57–61] and references therein).

In the scope of our work, we compare our methods with the parareal scheme proposed in [49] for the scalar advection
equation. Let us start with the following ordinary differential equation

du

dt
= f in (0, T), u(0) = g, (17)

for some positive constant T > 0.

Corollary 1. Suppose we discretize the temporal derivative in (17) using the iHDG-II method with the upwind flux and the elements
K j are ordered such that K j is on the left of K j+1 . At iteration k, uk

∣∣ converges to the HDG solution u|K for j ≤ k.
K j j

S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321 301
Proof. Since (17) can be considered as 1D transport equation (8) with velocity β = 1, the proof follows directly from
Theorem 1 and induction. �

Note that the iHDG scheme can be considered as a parareal algorithm in which the fine propagator is taken to be the
local solver (6) and the coarse propagator corresponds to the conservation condition (7). However, unlike existing parareal
algorithms, the coarse propagator of iHDG-parareal is dependent on the fine propagator. Moreover, Corollary 1 says that
after k iterations the iHDG-parareal solution converges up to element k, a feature common to the parareal algorithm studied
in [49]. For time dependent hyperbolic PDEs, the space–time iHDG method again can be understood as parareal approach,
and in this case, a layer of space–time elements converges after each iHDG-parareal iteration (see Remark 1). See Fig. 1 and
Table 1 of section 6 for a demonstration in 2D where either x or y is considered as “time”. It should be pointed out that
the specific parareal method in [49] exactly traces the characteristics, and hence may take less iterations to converge than
the iHDG-parareal method, but this is only true if the forward Euler discretization in time, upwind finite difference in space,
and C F L = 1 are used with constant advection velocity.

4.3. iHDG as a locally implicit method

In this section we discuss the relationship between iHDG and implicit/explicit HDG methods. For the simplicity of the
exposition, we consider time-dependent scalar transport equation given by:

∂ue

∂t
+ β · ∇ue = f . (18)

We first review the implicit/explicit HDG schemes for (18), and then compare them with iHDG-II. The implicit Euler HDG
scheme for (18) reads(

um+1

�t
, v

)
K

− (
um+1,∇ · (βv)

)
K + 〈

β · num+1 + |β · n|(um+1 − ûm+1), v
〉
∂ K =

(
f m+1 + um

�t
, v

)
K

,〈[[|β · n|ûm+1]] ,μ〉
∂ K = 〈[[|β · n|um+1]]+ [[

β · num+1]] ,μ〉
∂ K . (19)

Here, um+1 and ûm+1 stands for the volume and the trace unknowns at the current time step, whereas um and ûm are
the computed solutions from the previous time step. Clearly, um+1 and ûm+1 are coupled and this can be a challenge for
large-scale problems.

Next let us consider an explicit HDG with forward Euler discretization in time for (18):(
um+1

�t
, v

)
K

= (
um,∇ · (βv)

)
K − 〈

β · num + |β · n|(um − ûm), v
〉
∂ K +

(
f m + um

�t
, v

)
K

,〈[[|β · n|ûm]] ,μ〉
∂ K = 〈[[|β · n|um]]+ [[

β · num]] ,μ〉
∂ K ,

which shows that we can solve for um+1 element-by-element, completely independent of each other. However, since it is an
explicit scheme, the C F L restriction for stability can increase the computational cost for problems involving fast time scales
and/or fine meshes.

Now applying one iteration of the iHDG-II scheme for the implicit HDG formulation (19) with um as the initial guess
yields (

um+1

�t
, v

)
K

− (
um+1,∇ · (βv)

)
K + 〈

β · num+1 + |β · n|(um+1 − ûm,m+1), v
〉
∂ K =

(
f m+1 + um

�t
, v

)
K

,

〈[[|β · n|ûm,m+1]] ,μ〉
∂ K =

〈
|β · n|

{(
um+1)− + (

um)+} ,μ
〉
∂ K

+
〈
β · n− (um+1)− + β · n+ (um)+ ,μ

〉
∂ K

.

Compared to the explicit HDG scheme, iHDG-II requires local solves since it is locally implicit. As such, its CFL restriction is
much less (see Fig. 2), while still having similar parallel scalability of the explicit method.1 Indeed, Fig. 2 shows that the
CFL restriction is only indirectly through the increase of the number of iterations; for CFL numbers between 1 and 5, the
number of iterations varies mildly. Thus, as a locally implicit method, iHDG-II combines advantages of both explicit (e.g.
matrix free and parallel scalability) and implicit (taking reasonably large time stepsize without facing instability) methods.
Clearly, on convergence iHDG solution is, up to the stopping tolerance, the same as the fully-implicit solution.

1 In fact, due to local solves, iHDG-II could provide more efficient communication and computation overlapping.

302 S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321
4.4. iHDG-II for system of linear hyperbolic PDEs

In this section, as an example for the system of linear hyperbolic PDEs, we consider the following linearized oceanic
shallow water system [62]:

∂

∂t

⎛⎝ φe

ue

ve

⎞⎠+ ∂

∂x

⎛⎝
ue

φe

0

⎞⎠+ ∂

∂ y

⎛⎝
ve

0

φe

⎞⎠=
⎛⎝ 0

f
ve − γ
ue + τx
ρ

− f
ue − γ
ve + τy
ρ

⎞⎠ (20)

where φ = g H is the geopotential height with g and H being the gravitational constant and the perturbation of the free
surface height,
 > 0 is a constant mean flow geopotential height, ϑ := (u, v) is the perturbed velocity, γ ≥ 0 is the
bottom friction, τ := (

τx, τy
)

is the wind stress, and ρ is the density of the water. Here, f = f0 + β (y − ym) is the Coriolis
parameter, where f0, β , and ym are given constants. We study the iHDG-II methods for this equation and compare it with
the results in [45].

For the simplicity of the exposition and the analysis, let us employ the backward Euler HDG discretization for (20).
Since the unknowns of interest are those at the (m + 1)th time step, we can suppress the time index for the clarity of
the exposition. Furthermore, since the system is linear it is sufficient to consider homogeneous system with zero initial
condition, zero boundary condition, and zero forcing (wind stress). Applying the iHDG-II Algorithm 2 to the homogeneous
system gives(

φk+1

�t
,ϕ1

)
K

−
(

ϑk+1,∇ϕ1

)
K

+
〈

ϑk+1 · n + √

(
φk+1 − φ̂k,k+1

)
,ϕ1

〉
∂ K

= 0, (21a)(

uk+1

�t
,ϕ2

)
K

−
(

φk+1,
∂ϕ2

∂x

)
K

+
〈

φ̂k,k+1n1,ϕ2

〉
∂ K

=
(

f
vk+1 − γ
uk+1,ϕ2

)
K

, (21b)(

vk+1

�t
,ϕ3

)
K

−
(

φk+1,
∂ϕ3

∂ y

)
K

+
〈

φ̂k,k+1n2,ϕ3

〉
∂ K

=
(
− f
uk+1 − γ
vk+1,ϕ3

)
K

, (21c)

where ϕ1, ϕ2 and ϕ3 are the test functions, and

φ̂k,k+1 = 1

2

{(
φk+1

)− +
(
φk
)+}+

√

2

{(
ϑk+1

)− · n− +
(
ϑk
)+ · n+

}
. (22)

Lemma 2. The local solver (21) of the iHDG-II algorithm for the linearized shallow water equation is well-posed.

Proof. Since {(φk)+,
(ϑk)+} is a “forcing” to the local solver it is sufficient to set them to {0,0} and show that the only
solution possible is {(φk)−,
(ϑk)−} = {0,0}. Choosing the test functions ϕ1 = φk+1, ϕ2 = uk+1 and ϕ3 = vk+1 in (21),
integrating the second term in (21a) by parts, and then summing equations in (21) altogether, we obtain

1

�t

(
φk+1, φk+1

)
K

+

�t

(
ϑk+1,ϑk+1

)
K

+ √

〈
φk+1, φk+1

〉
∂ K

+ γ

(
ϑk+1,ϑk+1

)
K

− √

〈
φ̂k,k+1, φk+1

〉
∂ K

+

〈
φ̂k,k+1,n · ϑk+1

〉
∂ K

= 0. (23)

Summing (23) over all elements yields∑
K

1

�t

(
φk+1, φk+1

)
K

+

�t

(
ϑk+1,ϑk+1

)
K

+ γ

(
ϑk+1,ϑk+1

)
K

+ √

〈
φk+1, φk+1

〉
∂ K

− √

〈
φ̂k,k+1, φk+1

〉
∂ K

+

〈
φ̂k,k+1,n · ϑk+1

〉
∂ K

= 0. (24)

Substituting (22) in the above equation and canceling some terms we get,∑
K

1

�t

∥∥∥∥(φk+1
)−∥∥∥∥2

K
+
(
γ + 1

�t

)∥∥∥∥(ϑk+1
)−∥∥∥∥2

,K
+

√

2

∥∥∥∥(φk+1
)−∥∥∥∥2

∂ K

+
√

2

∥∥∥∥(ϑk+1 · n
)−∥∥∥∥2

,∂ K
=
∑
∂ K

√

2

〈{(
φk
)+ + √

(
ϑk · n

)+}
,
(
φk+1

)−〉
∂ K

−

2

〈{(
φk
)+ + √

(
ϑk · n

)+}
,
(
ϑk+1 · n

)−〉
∂ K

. (25)

S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321 303
Since
 > 0, all the terms on the left hand side are positive. When we set
{(

φk
)+

,

(
ϑk
)+}= {0,0}, i.e. the data from

neighboring elements, the only solution possible is
{(

φk+1
)−

,

(
ϑk+1

)−}= {0,0} and hence the method is well-posed. �

Next, our goal is to show that
(
φk+1,
ϑk+1

)
converges to zero. To that end, let us define

C := A
B

, A := max {1,
} + √

4ε
, G :=

ε
(

max {1,
} + √

)

4
(26)

and

B1 :=
(

ch

�t(p + 1)(p + 2)
+ 2

√

 − (
 + √

)ε

4

)

B2 :=
((

γ + 1

�t

)
ch

(p + 1)(p + 2)
+ 2

√

 − (1 + √

)ε

4

)
,B := min {B1,B2} ,

where 0 < c ≤ 1, ε > 0 are constants. We also need the following norms:∥∥∥(φk,ϑk
)∥∥∥2

�h

:=
∥∥∥φk

∥∥∥2

�h

+
∥∥∥ϑk

∥∥∥2

,�h

,∥∥∥(φk,ϑk · n
)∥∥∥2

Eh

:=
∥∥∥φk

∥∥∥2

Eh

+
∥∥∥ϑk · n

∥∥∥2

,Eh

.

Theorem 2. Assume that the meshsize h, the time step �t and the solution order p are chosen such that B > 0 and C < 1, then the
approximate solution at the kth iteration

(
φk,ϑk

)
converges to zero in the following sense∥∥∥(φk,ϑk · n

)∥∥∥2

Eh

≤ Ck
∥∥∥(φ0,ϑ0 · n

)∥∥∥2

Eh

,∥∥∥(φk,ϑk
)∥∥∥2

�h

≤ �t (A+ GC)Ck−1
∥∥∥(φ0,ϑ0 · n

)∥∥∥2

Eh

,

where C , A and G are defined in (26).

Proof. Using Cauchy–Schwarz and Young’s inequalities for the terms on the right hand side of (25) and simplifying we have∑
K

1

�t

∥∥∥∥(φk+1
)−∥∥∥∥2

K
+
(
γ + 1

�t

)∥∥∥∥(ϑk+1
)−∥∥∥∥2

,K
+

√

2

∥∥∥∥(φk+1
)−∥∥∥∥2

∂ K

+
√

2

∥∥∥∥(ϑk+1 · n
)−∥∥∥∥2

,∂ K
≤
∑
∂ K

 + √

4ε

∥∥∥∥(φk
)+∥∥∥∥2

∂ K

+ 1 + √

4ε

∥∥∥∥(ϑk · n
)+∥∥∥∥2

,∂ K
+ ε(
 + √

)

4

∥∥∥∥(φk+1
)−∥∥∥∥2

∂ K

+ ε(1 + √

)

4

∥∥∥∥(ϑk+1 · n
)−∥∥∥∥2

,∂ K
. (27)

An application of inverse trace inequality [63] for tensor product elements gives(
φk+1, φk+1

)
K

≥ 2ch

d(p + 1)(p + 2)

〈
φk+1, φk+1

〉
∂ K

, (28a)(
ϑk+1,ϑk+1

)
K

≥ 2ch

d(p + 1)(p + 2)

〈
ϑk+1,ϑk+1

〉
∂ K

, (28b)

where d is the spatial dimension which in this case is 2 and 0 < c ≤ 1 is a constant.2 Inequality (28), together with (27),
implies

2 Note that for simplices we can use the trace inequalities in [64] and it will change only the constants in the proof.

304 S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321
∑
∂ K

[(
ch

�t(p + 1)(p + 2)
+ 2

√

 − (
 + √

)ε

4

)∥∥∥∥(φk+1
)−∥∥∥∥2

∂ K

+
((

γ + 1

�t

)
ch

(p + 1)(p + 2)
+ 2

√

 − (1 + √

)ε

4

)∥∥∥∥(ϑk+1 · n
)−∥∥∥∥2

,∂ K

]

≤
∑
∂ K

[

 + √

4ε

∥∥∥∥(φk
)+∥∥∥∥2

∂ K
+ 1 + √

4ε

∥∥∥∥(ϑk · n
)+∥∥∥∥2

,∂ K

]
, (29)

which then implies∥∥∥(φk+1,ϑk+1 · n
)∥∥∥2

Eh

≤ C
∥∥∥(φk,ϑk · n

)∥∥∥2

Eh

,

where the constant C is computed as in (26). Therefore∥∥∥(φk+1,ϑk+1 · n
)∥∥∥2

Eh

≤ Ck+1
∥∥∥(φ0,ϑ0 · n

)∥∥∥2

Eh

. (30)

On the other hand, inequalities (27) and (30) imply∥∥∥(φk+1,ϑk+1
)∥∥∥2

�h

≤ �t (A+ GC)Ck
∥∥∥(φ0,ϑ0 · n

)∥∥∥2

Eh

and this ends the proof. �
We now derive an explicit relation between the number of iterations k, the meshsize h, the solution order p, the time

step �t and the mean flow geopotential height
. First, we need to find an ε which makes C < 1. From (26) we obtain the
following inequality for ε

max{1,
}+√

4ε(
ch

�t(p+1)(p+2)
+ 2

√

−(max{1,
}+√

)ε
4

) < 1. (31)

A sufficient condition for the denominator to be positive and existence of a real ε > 0 to the above inequality (31) is

ch
�t(p+1)(p+2)

max {1,
} + √

>
1

2
. (32)

This allows us to find an ε > 0 that satisfies the inequality (31) for all
. In particular, we can pick

ε =
2ch

�t(p+1)(p+2)
+ √

max {1,
} + √

. (33)

Using this value of ε in definition (26) we get

C =
⎛⎝ max{1,
}+√

√

1 + 2ch√

�t(p+1)(p+2)

⎞⎠2

and since the numerator is always greater than 1, the necessary and sufficient condition for the convergence of the algorithm
is given by

1(
1 + 2ch√

�t(p+1)(p+2)

)2k

k→∞−→ 0.

Using binomial theorem and neglecting higher order terms we get

k = O
(

�t(p + 1)(p + 2)
√

4ch

)
. (34)

Note that if we choose �t similar to explicit method, i.e. �t = O
(

h
p2

√

)
[65], k = O(1) independent of h and p. With

this result in hand we are now in a better position to understand the stability of iHDG-I and iHDG-II algorithms for the

S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321 305
linearized shallow water system. For unconditional stability of the iterative algorithms under consideration, we need B > 0
in (26) independent of h, p and �t . There are two terms in B: B1 coming from φ and B2 from ϑ or ϑ · n. We can write B
in Theorem 3.6 of [45] for iHDG-I also as3

B1 :=
(

ch

�t(p + 1)(p + 2)
+ 2

√

 − (
 + √

)ε

2

)
(35)

B2 :=
((

γ + 1

�t

)
ch

(p + 1)(p + 2)
− (1 + √

)ε

2

)
,B := min {B1,B2} . (36)

Note that for both iHDG-I and iHDG-II algorithms we have the stability in φ independent of h, p and �t , since we can
choose ε sufficiently small independent of h, p and �t and make B1 > 0 in (35) and (26). However, from (36) we have to
choose ε as a function of (h, p, �t) in order to have B2 > 0, and hence iHDG-I lacks the mesh independent stability in the
term associated with ϑ . This explains the instability observed in [45] for fine meshes and/or large time steps. Since B2 in
(26) can be made positive with a sufficiently small ε, independent of h, p and �t , iHDG-II is always stable: a significant
advantage over iHDG-I.

5. iHDG-II for linear convection–diffusion PDEs

5.1. First order form

In this section we apply the iHDG-II Algorithm 2 to the following first order form of the convection–diffusion equation:

κ−1σ e + ∇ue = 0 in �, (37a)

∇ · σ e + β · ∇ue + νue = f in �. (37b)

We assume that (37) is well-posed, i.e.,

ν − ∇ · β
2

≥ λ > 0. (38)

Though this is not a restriction, we take constant diffusion coefficient for the simplicity of the exposition. An upwind HDG
numerical flux [24] is given by

F̂ · n =

⎡⎢⎢⎣
ûn1
ûn2
ûn3

σ · n + β · nu + τ
(
u − û

)
⎤⎥⎥⎦ , (39)

where τ = 1
2 (α − β · n) and α =√|β · n|2 + 4. Similar to the previous sections, it is sufficient to consider the homogeneous

problem. Applying the iHDG-II Algorithm 2 we have the following iterative scheme

κ−1
(
σ k+1,τ

)
K

−
(

uk+1,∇ · τ
)

K
+
〈
ûk,k+1,τ · n

〉
∂ K

= 0, (40a)

−
(
σ k+1,∇v

)
K

−
(

uk+1,∇ · (βv) − νv
)

K
+
〈
β · nuk+1 + σ k+1 · n + τ (uk+1 − ûk,k+1), v

〉
∂ K

= 0, (40b)

where

ûk,k+1 =
{(

σ k+1 · n
)− + (

σ k · n
)+}+

{
β · n− (uk+1

)− + β · n+ (uk
)+}

α
+
{
τ− (uk+1

)− + τ+ (uk
)+}

α
. (41)

Lemma 3. The local solver (40) of the iHDG-II algorithm for the convection–diffusion equation is well-posed.

Proof. The proof is similar to the one for the shallow water equation and hence is given in the Appendix A. �
Now, we are in a position to prove the convergence of the algorithm. For ε, h > 0 and 0 < c ≤ 1 given, define

C1 := (‖β · n‖L∞(∂ K) + τ̄)(τ̄ + 1)

2εα∗
, C2 := (τ̄ + 1)

2εα∗
, (42)

3 This can be obtained by using Young’s inequality with ε in the proof of Theorem 3.6 in [45].

306 S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321
C3 := ετ̄ (1 + τ̄ + ‖β · n‖L∞(∂ K))

2α∗
, C4 := ε(1 + τ̄ + ‖β · n‖L∞(∂ K))

2α∗
, (43)

D := A
B

, A = max{C1,C2}, E := max{C3,C4}
min{κ−1, λ} , F := A

min{κ−1, λ} , (44)

B1 := 2chκ−1

d(p + 1)(p + 2)
+ 1

2ᾱ
− C4,B2 := 2chλ

d(p + 1)(p + 2)
+ 1

ᾱ
− C3, (45)

B := min{B1,B2}, (46)

where τ̄ := ‖τ‖L∞(∂�h) , ᾱ := ‖α‖L∞(∂�h) , and α∗ := inf
∂ K∈∂�h

α. As in the previous section we need the following norms

∥∥∥(σ k, uk
)∥∥∥2

�h

:=
∥∥∥σ k

∥∥∥2

�h

+
∥∥∥uk

∥∥∥2

�h

,

∥∥∥(σ k · n, uk
)∥∥∥2

Eh

:=
∥∥∥σ k · n

∥∥∥2

Eh

+
∥∥∥uk

∥∥∥2

Eh

.

Theorem 3. Suppose that the meshsize h and the solution order p are chosen such that B > 0 and D < 1, the algorithm (40a)–(41)
converges in the following sense∥∥∥(σ k · n, uk

)∥∥∥2

Eh

≤ Dk
∥∥∥(σ 0 · n, u0

)∥∥∥2

Eh

,∥∥∥(σ k, uk
)∥∥∥2

�h

≤ (ED +F)Dk−1
∥∥∥(σ 0 · n, u0

)∥∥∥2

Eh

,

where D, E and F are defined in (44).

Proof. The proof is similar to the one for the shallow water equation and hence is given in the Appendix B. �
Similar to the discussion in section 4.4, one can show that

k = O
(

d(p + 1)(p + 2)

8ᾱch min
{
κ−1, λ

}) . (47)

For time-dependent convection–diffusion equation, we discretize the spatial differential operators using HDG. For the
temporal derivative, we use implicit time stepping methods, again with either backward Euler or Crank–Nicolson method
for simplicity. The analysis in this case is almost identical to the one for steady state equation except that we now have
an additional L2-term

(
uk+1, v

)
K /�t in the local equation (40b). This improves the convergence of the iHDG-II method.

Indeed, the convergence analysis is the same except we now have λ + 1/�t in place of λ. In particular we have the
following estimation

k = O
(

d(p + 1)(p + 2)

8ᾱch min
{
κ−1, (λ + 1/�t)

}) .

Remark 2. Similar to the shallow water system if we choose �t =O
(

h
p2

)
then the number of iterations is independent of h

and p. This is more efficient than the iterative hybridizable IPDG method for the parabolic equation in [47], which requires
�t = O(h2

p4) in order to achieve constant iterations. The reason is perhaps due the fact that hybridizable IPDG is posed
directly on the second order form whereas HDG uses the first order form. While iHDG-I has mesh independent stability for
only u (see [45, Theorem 4.1]), iHDG-II does for both u and σ ; an important improvement.

6. Numerical results

In this section various numerical results verifying the theoretical results are provided for the transport equation, the
shallow water equation, and the convection–diffusion equation in both two- and three-dimensions.

6.1. Transport equation

We consider the same 2D and 3D test cases in [45, sections 5.1.1 and 5.1.2]. For the 2D test case we consider f = 0 and
β = (1 + sin(π y/2), 2) in (8). The domain is [0, 2] × [0, 2] and the inflow boundary conditions are given by

g =
⎧⎨⎩

1 x = 0,0 ≤ y ≤ 2
sin6 (πx) 0 < x ≤ 1, y = 0
0 1 ≤ x ≤ 2, y = 0

.

S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321 307
Fig. 1. Evolution of the iterative solution for the 2D transport equation using the iHDG-II algorithm.

Table 1
The number of iterations taken by the iHDG-II algorithm for the trans-
port equation in 2D and 3D settings.

Nel(2D) Nel(3D) p 2D solution 3D solution

4 × 4 2 × 2 × 2 1 9 6
8 × 8 4 × 4 × 4 1 17 12
16 × 16 8 × 8 × 8 1 33 23
32 × 32 16 × 16 × 16 1 65 47

4 × 4 2 × 2 × 2 2 9 6
8 × 8 4 × 4 × 4 2 17 12
16 × 16 8 × 8 × 8 2 33 23
32 × 32 16 × 16 × 16 2 65 47

4 × 4 2 × 2 × 2 3 9 7
8 × 8 4 × 4 × 4 3 17 12
16 × 16 8 × 8 × 8 3 33 23
32 × 32 16 × 16 × 16 3 65 47

4 × 4 2 × 2 × 2 4 9 6
8 × 8 4 × 4 × 4 4 17 12
16 × 16 8 × 8 × 8 4 33 24
32 × 32 16 × 16 × 16 4 64 48

For the 3D test case the exact solution is given by

ue = 1

π
sin(πx) cos(π y) sin(π z).

We choose β = (z, x, y) in (8). The forcing is selected in such a way that it corresponds to the exact solution. The domain is
[0, 1] × [0, 1] × [0, 1] with faces x = 0, y = 0 and z = 0 as the inflow boundaries. The inflow boundary condition is enforced
using the exact solution.

The mesh consists of structured quadrilateral (2D)/hexahedral (3D) elements. Throughout the numerical section unless
otherwise stated explicitly, we use the following stopping criterion

|‖uk − ue‖L2(�) − ‖uk−1 − ue‖L2(�)| < 10−10, (48)

if the exact solution is available, and

‖uk − uk−1‖L2(�) < 10−10, (49)

if the exact solution is not available.
From Theorem 1, the theoretical number of iterations is approximately d × (Nel)

1/d (where d is the dimension). It can be
seen from the fourth and fifth columns of Table 1 that the numerical results agree well with the theoretical prediction. We
can also see that the number of iterations is independent of solution order, which is consistent with the theoretical result
Theorem 1. Fig. 1 shows the solution converging from the inflow boundary to the outflow boundary in a layer-by-layer
manner. Again, the process is automatic, i.e., no prior element ordering or information about the advection velocity is
required.

Now, we study the parallel performance of the iHDG algorithm. For this purpose we have implemented iHDG algorithm
on top of mangll [66–68] which is a higher order continuous/discontinuous finite element library that supports large scale
parallel simulations using MPI. The simulations are conducted on Stampede 1 at the Texas Advanced Computing Center
(TACC). Stampede 1 is a 10 petaflop supercomputer consisting of 6400 Sandy Bridge nodes. Each node consists of two
8-core Xeon E5-2680 2.7 GHz processors and one 61-core Xeon Phi SE10P KNC MIC 1.1 GHz coprocessor. It has 32 GB main
memory per node (8 × 4 GB DDR3-1600 MHz) and the coprocessor has additional 8 GB GDDR5 memory. The interconnect

308 S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321
Table 2
Strong scaling results on TACC’s Stampede system for the 3D transport
problem.

Nel = 262,144, p = 4, dof = 32.768 million, Iterations = 190

cores Time [s] Nel/core Efficiency
[%]

64 1758.62 4096 100.0
128 883.88 2048 99.5
256 439.94 1024 99.9
512 228.69 512 96.1
1024 113.87 256 96.5
2048 56.36 128 97.5
4096 29.26 64 91.8
16384 11.38 16 59

Nel = 2,097,152, p = 4, dof = 262.144 million, Iterations = 382

cores Time [s] Nel/core Efficiency
[%]

512 3634.89 4096 100.0
1024 1788.78 2048 101.5
2048 932.495 1024 97.3
4096 447.337 512 101.5
8192 232.019 256 97.9
16384 117.985 128 92.9

Table 3
Weak scaling results on TACC’s Stampede system for the 3D
transport problem.

1024 Nel/core, p = 4

cores Time [s] Time ratio Iterations ratio

4 103.93 1 1
32 217.23 2.1 2
256 439.94 4.2 4
2048 932.49 8.9 8

128 Nel/core, p = 4

cores Time [s] Time ratio Iterations ratio

4 6.52 1 1
32 13.68 2.1 2
256 27.71 4.2 4
2048 56.37 8.6 8

is a 56 GB/s Mellanox FDR InfiniBand network in a 2-level fat-tree topology. To carry out the computations, we have used
only the main processors and not the coprocessors.

Table 2 shows strong scaling results for the 3D transport problem. The parallel efficiency is over 90% for all the cases
except for the case where we use 16,384 cores and 16 elements per core whose efficiency is 59%. This is due to the fact
that, with 16 elements per core, the communication cost dominates the computation. Table 3 shows the weak scaling with
1024 and 128 elements/core. Since the number of iterations increases linearly with the number of elements, we can see a
similar increase in time when we increase the number of elements, and hence cores.

Let us now consider the time dependent 3D transport equation with the following exact solution

ue = e−5((x−0.35t)2+(y−0.35t)2+(z−0.35t)2),

where the velocity field is chosen to be β = (0.2, 0.2, 0.2). In Fig. 2 are the numbers of iHDG iterations taken per time step
to converge versus the C F L number. As can be seen, for C F L in the range [1,5] the number of iterations grows mildly. As
a result, we get a much better weak scaling results in Table 4 in comparison to the steady state case in Table 3.

6.2. Linearized shallow water system

The goal of this section is to verify the theoretical findings in section 4.4. To that extent, let us consider equation (20)
with a linear standing wave, for which,
 = 1, f = 0, γ = 0 (zero bottom friction), τ = 0 (zero wind stress). The domain
is [0, 1] × [0, 1] and the wall boundary condition is applied on the domain boundary. The following exact solution [62] is
taken

φe = cos(πx) cos(π y) cos(
√

2πt), (50a)

S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321 309
Fig. 2. CFL versus Iterations for the 3D time dependent transport.

Table 4
Weak scaling results on TACC’s Stampede system for the 3D time dependent
transport problem.

128 Nel/core, p = 4, �t = 0.01, |β|max = 0.35

cores Time/Timestep [s] Time ratio Iterations ratio CFL

4 1.69 1 1 0.45
32 1.91 1.1 1.1 0.9
256 2.09 1.2 1.1 1.8
2048 2.72 1.6 1.4 3.6
16384 4.68 2.8 2.1 7.2

Table 5
Comparison of iHDG-I and iHDG-II for the linearized shallow water system.

h p iHDG-I iHDG-II

�t = 10−1 �t = 10−2 �t = 10−1 �t = 10−2

0.25 1 19 6 14 6
0.125 1 * 6 18 9
0.0625 1 * 7 32 10
0.03125 1 * 9 59 8

0.25 2 * 9 15 9
0.125 2 * 11 19 9
0.0625 2 * 13 32 11
0.03125 2 * 15 59 12

0.25 3 * 7 16 8
0.125 3 * 9 20 8
0.0625 3 * 12 31 10
0.03125 3 * * 59 12

0.25 4 * 10 17 9
0.125 4 * 12 32 10
0.0625 4 * * 60 9
0.03125 4 * * 112 13

ue = 1√
2

sin(πx) cos(π y) sin(
√

2πt), (50b)

ve = 1√
2

cos(πx) sin(π y) sin(
√

2πt). (50c)

We use Crank–Nicolson method for the temporal discretization and the iHDG-II approach for the spatial discretization. In
Table 5 we compare the number of iterations taken by iHDG-I and iHDG-II methods for two different time steps �t = 0.1
and �t = 0.01. Here, “∗” indicates divergence. As can be seen from the third and fourth columns, the iHDG-I method
diverges for finer meshes and/or larger time steps. This is consistent with the findings in section 4.4 where the divergence
is expected because of the lack of mesh independent stability in the velocity. On the contrary, iHDG-II converges for all
cases.

In Table 5, we use a series of structured quadrilateral meshes with uniform refinements such that the ratio of successive
meshsizes is 1/2. The asymptotic result (34), which is valid for h √ � 1, predicts that the ratio of the number
�t(p+1)(p+2)

310 S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321
Fig. 3. Growth of iterations with meshsize h for the iHDG-II method for the linearized shallow water system. (For interpretation of the colors in the figure(s),
the reader is referred to the web version of this article.)

Table 6
Growth of iterations with solution order p for the iHDG-II method
for the linearized shallow water system.

p Meshsize (h) Asymptotics

0.25 0.125 0.0625 0.03125

2 1.07 1.06 1 1 2
3 1.14 1.11 0.97 1 3.33
4 1.21 1.78 1.87 1.9 5

of iterations required by successive refined meshes is 2, and the results in Fig. 3 confirm this prediction. The last two
columns of Table 5 also confirms the asymptotic result (34) that the number of iHDG-II iterations scales linearly with the
time stepsize.

Next, we study the iHDG iteration growth as the solution order p increases. The asymptotic result (34) predicts that
k = O (p2). In Table 6, rows 2–4 show the ratio of the number of iterations taken for solution orders p = {2,3,4} over the
one for p = 1 for four different meshsizes as in Table 5. As can be seen, the theoretical estimation is conservative.

6.3. Nonlinear shallow water system

In this section, we consider the nonlinear shallow water system, given by,

∂u

∂t
+ ∇ · F (u) = f, (51)

where the forcing function f, and the x-component and y-component of the flux F are given by

Fx :=
⎛⎝ Hu

Hu2 + 1
2 g H2

Huv

⎞⎠ , Fy :=
⎛⎝ H v

Huv
H v2 + 1

2 g H2

⎞⎠ , and f :=
⎛⎝ 0

−g Hbx

−g Hby

⎞⎠ ,

while the conservative variables u are defined as

u := (H, Hu, H v)T .

Here, H is the water depth, u is the depth averaged velocity component in the x-direction, v is the depth averaged velocity
component in the y-direction, b is the bathymetry, and g is the gravitational constant.

For nonlinear problems both the local solver (2a) and the conservation constraints (2b) are nonlinear. In order to tackle
these problems, we apply the iHDG algorithms to solve the linearized system arising from each Newton step of the HDG
system (2). For the clarity of the exposition, let us consider one generic Newton step. To begin, we define the following
residuals for (2a) and (2b):

Res = (∂tu,v)�h
− (F (u) ,∇v)�h

+
〈
F̂
(
u, û

) · n,v
〉
∂�h

+ (Cu,v)�h
− (f,v)�h

, (52a)

Flx =
〈[[

F̂
(
u, û

) · n
]]

,μ
〉
Eh

. (52b)

Here, the hybridized Lax–Friedrichs one, used in [24] is employed, i.e.,

S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321 311
Fig. 4. Nonlinear shallow water system with translating vortex solution: convergence rate for HDG methods with iHDG-II algorithm (blue dashed line) and
direct solver (red dashed squares).

F̂
(
u, û

) · n = F (u) · n + τ I
(
u − û

)
,

with û :=
(

Ĥ, Ĥu, Ĥ v
)T

, the stabilization τ = √
û2 + v̂2 + g Ĥ , and I the corresponding identity matrix. Note that û and v̂

are given by û = Ĥu
Ĥ

and v̂ = Ĥ v
Ĥ

.

If we define a Newton step for u and û as δu and δû, respectively, the linear system for δu and δû resulting from each
Newton step is given by (after the temporal derivative is discretized, e.g., with backward Euler or Crank–Nicolson)⎡⎣ ∂Res

∂u
∂Res
∂û

∂Flx
∂u

∂Flx
∂û

⎤⎦⎧⎨⎩ δu

δû

⎫⎬⎭=
⎧⎨⎩−Res

−Flx

⎫⎬⎭ . (53)

Applying iHDG-II algorithm to the linear system (53) we get

∂Res

∂u
δuk+1 + ∂Res

∂û
δûk,k+1 = −Res, (54)

where δûk,k+1 is determined from the conservation condition as[[
∂Flx

∂û

]]
δûk,k+1 = − [[Flx]] −

(
∂Flx

∂u

)− (
δuk+1

)− −
(

∂Flx

∂u

)+ (
δuk

)+
. (55)

Once convergence is obtained, the volume and trace unknown are updated as

u −→ u + δu,

û −→ û + δû,

and we can proceed with the next Newton step.
For the first example, we study the convergence of the iHDG-II solver for a translating vortex solution [69] whose exact

solution is given by

He =
[

1 − (γ − 1)

16γπ2
β2e2

(
1−R2

)] 1
γ −1

, ue = 1 − βe
(
1−R2

) (y − y0)

2π
,

ve = βe
(
1−R2

) (x − t − x0)

2π
,

with R2 = (x − t − x0)
2 + (y − y0)

2, x0 = 5, y0 = 0, and β = 5. We take γ = g = 2, and a flat bathymetry b = bx = by = 0.
The domain considered is � = [3.5,5.5] × [−1,1] and structured quadrilateral elements are used. The exact solution is used
to enforce the boundary condition. For time discretization, we again use the Crank–Nicolson method, in which the time
step is �t = 10−4 and there are 100 time steps. In Fig. 4, we compare the h-convergence rates obtained with the iHDG-II
algorithm and the direct solver. Results from both solvers are on top of each other with the convergence rate between p and
(p + 1/2). In this case, each time step takes 2–3 Newton iterations, each of which takes less than 10 iHDG-II iterations. The
stopping criterion for iHDG-II algorithm is based on (49) and the stopping tolerance is taken to be 10−10 for both iHDG-II
and Newton iterations.

312 S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321
Fig. 5. Evolution of the water depth H for the water drop test case with iHDG-II algorithm.

Next, we consider the water drop problem considered in [24,70,71]. The initial conditions are

H (x, y,0) := 1 + 0.1 exp
[
−100 (x − 0.5)2 − 100 (y − 0.5)2

]
,

and

Hu (x, y,0) = H v (x, y,0) = 0,

that is, the flow is initially at rest.
We consider the case with flat bottom i.e., b = bx = by = 0 and the domain of interest is � = [0,1]2. A structured

quadrilateral mesh with 64 elements (h = 0.125) and solution order p = 6 is used. Wall boundary conditions are applied
to the entire boundary ∂�. The Crank–Nicolson method with a time step of �t = 0.0005 is employed and the simulation
is run for 2000 time steps. The time evolution of the water depth H and the depth averaged y-velocity v are shown in
Figs. 5 and 6, respectively. The u velocity evolution is same as v but rotated by 90 degrees, and hence is not shown.
The numerical results are comparable to those in [24,70,71]. In Fig. 7, we show the number of iHDG-II iterations taken
per Newton iteration at the indicated times. The horizontal axis represents the number of Newton iterations taken from
(t − �t) to t at the indicated times t . The markers in the vertical axis indicate the number of iHDG-II iterations taken at
the corresponding Newton iteration in the horizontal axis to solve the linear system (53). The stopping tolerance is taken
to be 10−10 for both iHDG-II and Newton iterations. As can be seen, approximately 16 Newton iterations are required
per time step and the number of iHDG-II iterations decreases with each Newton iteration. The reason is that, after each
Newton iteration, the initial guess (the solution from the previous Newton iteration) for iHDG iteration is improved and
upon convergence Newton steps are smaller.

In Table 7 we compare the maximum number of iHDG-II iterations and Newton iterations taken per time step for
different meshsizes and time steps. Similar to linear problems the number of iHDG-II iterations increases for finer mesh-

S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321 313
Fig. 6. Evolution of depth averaged y-velocity v for the water drop test case with iHDG-II algorithm.

Fig. 7. Number of iHDG-II iterations taken for each Newton iteration at different times for the water drop test case with h = 0.125, p = 6 and �t = 0.0005.

sizes, higher solution orders, and larger time steps. The number of Newton iterations on the other hand decreases for
finer meshsizes and approaches a constant. This is well-known as the number of Newton iterations depends on the non-
linearity of the problem and how well it is captured by the meshsize. Once the nonlinearity is captured by a particular
meshsize and solution order, the number of iterations remains unchanged with further refinements [72,73]. For smaller
time steps the number of Newton iterations is reduced since the solutions at two consecutive time steps are close to each
other.

314 S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321
Table 7
Number of iHDG-II and Newton iterations for different meshsizes and time step-
sizes for the water drop test case of nonlinear shallow water system.

h p iHDG-II Newton

�t = 10−3 �t = 10−4 �t = 10−3 �t = 10−4

0.25 1 7 5 7 4
0.125 1 8 5 6 3
0.0625 1 10 5 3 3
0.03125 1 13 6 3 3

0.25 2 8 5 8 4
0.125 2 9 5 6 4
0.0625 2 12 6 6 3
0.03125 2 17 7 3 3

0.25 3 9 5 9 5
0.125 3 11 5 8 4
0.0625 3 14 6 3 3
0.03125 3 20 7 3 3

0.25 4 9 5 10 5
0.125 4 12 6 9 4
0.0625 4 18 7 5 3
0.03125 4 26 9 7 3

Table 8
Comparison of iHDG-I and iHDG-II methods for different κ .

h p iHDG-I iHDG-II

κ = 10−2 κ = 10−3 κ = 10−6 κ = 10−2 κ = 10−3 κ = 10−6

0.5 1 24 23 23 17 17 17
0.25 1 30 34 35 25 25 26
0.125 1 50 55 56 35 37 38
0.0625 1 90 94 97 62 64 65

0.5 2 26 24 25 17 19 19
0.25 2 41 42 42 27 27 27
0.125 2 66 67 67 42 43 43
0.0625 2 * 109 110 67 70 71

0.5 3 27 31 31 19 19 19
0.25 3 33 33 38 24 26 27
0.125 3 * 58 60 38 39 41
0.0625 3 * 102 106 69 69 71

0.5 4 26 27 27 17 19 19
0.25 4 50 41 43 26 27 27
0.125 4 * 71 72 42 45 46
0.0625 4 * 123 125 73 78 79

6.4. Linear convection–diffusion equation

In this section the following exact solution for equation (37) is considered

ue = 1

π
sin(πx) cos(π y) sin(π z).

The forcing is chosen such that it corresponds to the exact solution. The velocity field is chosen as β = (1 + z, 1 + x, 1 + y)

and we take ν = 1. The domain is [0, 1] × [0, 1] × [0, 1]. A structured hexahedral mesh is used for the simulations. The
stopping criterion based on the exact solution (48) is used.

In Table 8 we report the number of iterations taken by iHDG-I and iHDG-II methods for different values of the diffusion
coefficient κ . Similar to the shallow water equations, due to the lack of stability in σ , iHDG-I diverges when κ is large for
fine meshes and/or high solution orders. The iHDG-II method, on the other hand, converges for all the meshes and solution
orders, and the number of iterations are smaller than that of the iHDG-I method. Next, we verify the growth of iHDG-II
iterations predicted by the asymptotic result (47).

Since min
{
κ−1, λ

} = λ for all the numerical results considered here, due to (47) we expect the number of iHDG-II
iterations to be independent of κ and this can be verified in Table 8. In Figs. 8(a), 8(b) and 8(c) the growth of iterations
with respect to meshsize h for κ = 10−2, 10−3 and 10−6 are compared. In the asymptotic limit, for all the cases, the ratio
of successive iterations reaches a value of around 1.7 which is close to the theoretical prediction 2. Hence the theoretical

S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321 315
Fig. 8. Ratio of successive iterations as we refine the mesh for the iHDG-II method for different κ .

Table 9
Growth of iterations with p for the iHDG-II method for the
elliptic equation.

p Meshsize (h) Asymptotics

0.5 0.25 0.125 0.0625

2 2.41 2.11 2.03 2.01 2
3 4.07 3.55 3.17 * 3.33
4 6.09 5.23 4.81 * 5

analysis predicts well the growth of iterations with respect to the meshsize h. On the other hand, columns 6–8 in Table 8
show that the iterations are almost independent of solution orders. This is not predicted by the theoretical results which
indicates that the number of iterations scales like O(p2). The reason is due to the convection dominated nature of the
problem, for which we have shown that the number of iterations is independent of the solution order.

Finally, we consider the elliptic regime with κ = 1 and β = 0. For this case we use the following stopping criterion based
on the direct solver solution udirect∥∥∥uk − udirect

∥∥∥
L2(�)

< 10−10.

As shown in Fig. 8(d) and Table 9, our theoretical analysis predicts well the relation between the number of iterations
and the meshsize and the solution order. In Table 9 “∗” represents that the scheme has reached the maximum number of
iterations specified i.e. 2000 and didn’t converge to the specified tolerance limit of 10−10 yet.

6.5. SPE10 test case

In this section we consider a benchmark problem of subsurface flow through porous media from the Tenth Society of
Petroleum Comparative Solution Project (SPE10, model 2) [74]. The flow is governed by the following elliptic equation (Darcy
law) written in the first-order form,

σ = −κ∇u on �,

∇ · σ = f on �, (56)

where σ is the Darcy velocity, u is the pressure and κ is the permeability.
We consider the permeability field corresponding to the 75th layer as shown in Fig. 9(a). The permeability field varies

by six orders of magnitude and is highly heterogeneous. It gives rise to extremely complex velocity fields. The considered

316 S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321
Fig. 9. SPE10 test case: (a) permeability field in log scale, and (b) pressure field from direct solver for p = 1 solution.

Fig. 10. SPE10 test case: (a) velocity field from direct solver for p = 1 solution, and (b) error history with respect to iHDG-II iterations for the three different
initial guesses.

domain is 1200 × 2200 [f t2]. The mesh is chosen as 60 × 220 quadrilateral elements, so that the mesh skeleton aligns with
the discontinuities in the permeability and the permeability field is constant within each element. We choose f = 0, which
corresponds to the fact that there is no source or sink. For the boundary conditions, we take the pressure on the left and
right faces to be 1 and 0 respectively. On the top and bottom faces, no-flux boundary condition σ · n = 0 is applied. We use
the upwind HDG flux (39) with the velocity β = 0 for this problem. In Figs. 9(b) and 10(a) we show the pressure field and
the velocity field using direct solver with solution order p = 1.

We next consider the iHDG-II algorithm with three different initial guesses:

1. zero,
2. solution of equation (56) with the average of the original permeability field over the whole domain,
3. solution of equation (56) with the permeability field in each element given by

κ = κ + rand(0,1) × κ,

where rand(0, 1) is a random number between 0 and 1, i.e. we randomly perturb the original permeability value in
each element by 0%–100%.

In Fig. 11 we show the three initial guesses for the pressure and in Fig. 12 are the pressure fields corresponding to these
initial guesses after 2000 iHDG-II iterations using solution order p = 1. Since the third initial guess is the closest to the
direct solution (compared to Fig. 9(b)), the corresponding pressure field is almost the same as the direct solution, while the
others are not. The conclusion is similar for the corresponding velocity fields in Figs. 13 and 14. In order to have a more
quantitative comparison, we plot the relative error

S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321 317
Fig. 11. SPE10 test case: three different initial guesses for the pressure field.

Fig. 12. SPE10 test case: the pressure fields obtained with the iHDG-II algorithm after 2000 iterations with three different initial guesses.

Fig. 13. SPE10 test case: three different initial guesses for the velocity field.

‖error‖ =
√‖σ k+1 − σ k‖2 + ‖uk+1 − uk‖2√‖σ k+1‖2 + ‖uk+1‖2

in Fig. 10(b) as the number of iHDG iterations increases. For all of the initial guesses, there is a quick drop in the errors
in the first few iterations and thereafter the errors decrease slowly. Compared to the other examples, this is the most
challenging one, for which the iHDG algorithm, if used as a direct solver, could be ineffective. Nevertheless, this is a common
feature of many of the fixed-point iterative methods like Jacobi and Gauss–Seidel [75,76]. Ongoing work is to employ iHDG
as a smoother for multigrid methods or as a preconditioner for GMRES iterations, and we shall report our findings in the
near future.

7. Conclusions

We have presented an iterative HDG approach which improves upon our previous work [45] in several aspects. In par-
ticular, it converges in a finite number of iterations for the scalar transport equation and is unconditionally convergent
for both the linearized shallow water system and the convection–diffusion equation. Moreover, compared to our previous
work [45], we provide several additional findings: 1) we make a connection between iHDG and the parareal method, which
reveals interesting similarities and differences between the two methods; 2) we show that iHDG can be considered as a
locally implicit method, and hence being somewhat in between fully explicit and fully implicit approaches; 3) for both the

318 S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321
Fig. 14. SPE10 test case: velocity field obtained with iHDG-II algorithm after 2000 iterations with three different initial guesses.

linearized shallow water system and the convection–diffusion equation, using an asymptotic approximation, we uncover a
relationship between the number of iterations and time stepsize, solution order, meshsize and the equation parameters. This
allows us to choose the time stepsize such that the number of iterations is approximately independent of the solution order
and the meshsize; 4) we show that iHDG-II has improved stability and convergence rates over iHDG-I; 5) we provide both
strong and weak scalings of our iHDG approach up to 16,384 cores; and 6) we show how iHDG approaches can be used as
a linear solver for nonlinear problem. Ongoing work is to use iHDG algorithms as smoother for multigrid methods and as
preconditioner for GMRES approaches.

Acknowledgements

We are indebted to Professor Hari Sundar for sharing his high-order finite element library homg, on which we have
implemented the iHDG algorithms and produced numerical results. We thank Texas Advanced Computing Center (TACC) for
processing our requests so quickly regarding running our simulations on Stampede. The first author would like to thank
Stephen Shannon for helping in proving some results and various fruitful discussions on this topic. We thank Professor
Martin Gander for pointing us to the reference [49]. We thank the anonymous referees for their useful comments which
improved this paper substantially. The first author would like to dedicate this work in memory of his late grandfather
Gopalakrishnan Thiruvankatam.

Appendix A. Proof of well-posedness of local solver of the iHDG-II method for the linear convection–diffusion equation

Proof. Choosing σ k+1 and uk+1 as test functions in (40a)–(40b), integrating the second term in (40a) by parts, using (12)
for second term in (40b), and then summing up the resulting two equations we obtain

κ−1
(
σ k+1,σ k+1

)
K

+
({

ν − ∇ · β
2

}
uk+1, uk+1

)
K

+
〈(

β · n

2
+ τ

)
uk+1, uk+1

〉
∂ K

+
〈
(σ k+1 · n − τuk+1), ûk,k+1

〉
∂ K

= 0. (57)

Substituting (41) in the above equation and simplifying some terms we get∑
K

κ−1
∥∥∥∥(σ k+1

)−∥∥∥∥2

K
+
({

ν − ∇ · β
2

}(
uk+1

)−
,
(

uk+1
)−)

K

+
〈{ |β · n|2 + 2

2α

}(
uk+1

)−
,
(

uk+1
)−〉

∂ K
+
〈

1

α

(
σ k+1 · n

)−
,
(
σ k+1 · n

)−〉
∂ K

+
〈
β · n−

α

(
uk+1

)−
,
(
σ k+1 · n

)−〉
∂ K

=
∑
∂ K

−
〈

1

α

(
σ k+1 · n

)−
,
(
σ k · n

)+〉
∂ K

−
〈{

β · n+ + τ+

α

}(
σ k+1 · n

)−
,
(

uk
)+〉

∂ K
+
〈
τ−

α

(
uk+1

)−
,
(
σ k · n

)+〉
∂ K

+
〈{

τ−(β · n+ + τ+)

α

}(
uk+1

)−
,
(

uk
)+〉

∂ K
. (58)

Using the identity

S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321 319
〈
β · n

α
uk+1,σ k+1 · n

〉
∂ K

=
∥∥∥∥ 1√

2α

(
β · nuk+1 + σ k+1 · n

)∥∥∥∥2

∂ K

−
〈
β · n2

2α
uk+1, uk+1

〉
∂ K

−
〈

1

2α
σ k+1 · n,σ k+1 · n

〉
∂ K

, (59)

and the coercivity condition (38) we can write (58) as∑
K

κ−1
∥∥∥∥(σ k+1

)−∥∥∥∥2

K
+ λ

∥∥∥∥(uk+1
)−∥∥∥∥2

K
+
∥∥∥∥(uk+1

)−∥∥∥∥2

1/α,∂ K

+
∥∥∥∥(σ k+1 · n

)−∥∥∥∥2

1/2α,∂ K
+
∥∥∥∥ 1√

2α

{
β · n− (uk+1

)− +
(
σ k+1 · n

)−}∥∥∥∥2

∂ K

≤
∑
∂ K

−
〈

1

α

(
σ k+1 · n

)−
,
(
σ k · n

)+〉
∂ K

−
〈{

β · n+ + τ+

α

}(
σ k+1 · n

)−
,
(

uk
)+〉

∂ K

+
〈
τ−

α

(
uk+1

)−
,
(
σ k · n

)+〉
∂ K

+
〈{

τ−(β · n+ + τ+)

α

}(
uk+1

)−
,
(

uk
)+〉

∂ K
. (60)

Since all the terms on the left hand side are positive, when we take the “forcing” to the local solver
{(

uk
)+

,
(
σ k
)+}= {0,0},

the only solution possible is
{(

uk+1
)−

,
(
σ k+1

)−}= {0,0} and hence the method is well-posed. �
Appendix B. Proof of convergence of the iHDG-II method for the linear convection–diffusion equation

Proof. In equation (60) omitting the last term on the left hand side and using Cauchy–Schwarz and Young’s inequalities for
the terms on the right hand side we get∑

K

κ−1
∥∥∥∥(σ k+1

)−∥∥∥∥2

K
+ λ

∥∥∥∥(uk+1
)−∥∥∥∥2

K
+
∥∥∥∥(uk+1

)−∥∥∥∥2

1/α,∂ K

+
∥∥∥∥(σ k+1 · n

)−∥∥∥∥2

1/2α,∂ K
≤
∑
∂ K

1

2ε

〈{
τ− + 1

α

}(
σ k · n

)+
,
(
σ k · n

)+〉
∂ K

+ 1

2ε

〈{
(1 + τ−)(β · n+ + τ+)

α

}(
uk
)+

,
(

uk
)+〉

∂ K

+ ε

2

〈{
1 + τ+ + β · n+

α

}(
σ k+1 · n

)−
,
(
σ k+1 · n

)−〉
∂ K

+ ε

2

〈{
τ−(1 + τ+ + β · n+)

α

}(
uk+1

)−
,
(

uk+1
)−〉

∂ K
. (61)

We can write the above inequality as

κ−1
∥∥∥∥(σ k+1

)−∥∥∥∥2

K
+ λ

∥∥∥∥(uk+1
)−∥∥∥∥2

K
+ 1

ᾱ

∥∥∥∥(uk+1
)−∥∥∥∥2

∂ K
+ 1

2ᾱ

∥∥∥∥(σ k+1 · n
)−∥∥∥∥2

∂ K

≤ τ̄ + 1

2εα∗

∥∥∥∥(σ k · n
)+∥∥∥∥2

∂ K
+ (1 + τ̄)(‖β · n‖L∞(∂ K) + τ̄)

2εα∗

∥∥∥∥(uk
)+∥∥∥∥2

∂ K

+ ε(1 + τ̄ + ‖β · n‖L∞(∂ K))

2α∗

∥∥∥∥(σ k+1 · n
)−∥∥∥∥2

∂ K

+ ετ̄ (1 + τ̄ + ‖β · n‖L∞(∂ K))

2α∗

∥∥∥∥(uk+1
)−∥∥∥∥2

∂ K
, (62)

where τ̄ := ‖τ‖L∞(∂�h) , ᾱ := ‖α‖L∞(∂�h) , and α∗ := inf
∂ K∈∂�h

α.

By the inverse trace inequality (28) we infer from (62) that∑
B1

∥∥∥∥(σ k+1 · n
)−∥∥∥∥2

∂ K
+ B2

∥∥∥∥(uk+1
)−∥∥∥∥2

∂ K
≤
∑[

C1

∥∥∥∥(uk
)+∥∥∥∥2

∂ K
+ C2

∥∥∥∥(σ k · n
)+∥∥∥∥2

∂ K

]
,

∂ K ∂ K

320 S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321
which implies∥∥∥(σ k+1 · n, uk+1
)∥∥∥2

Eh

≤ D
∥∥∥(σ k · n, uk

)∥∥∥2

Eh

,

where the constant D is computed as in (44). Therefore∥∥∥(σ k+1 · n, uk+1
)∥∥∥2

Eh

≤ Dk+1
∥∥∥(σ 0 · n, u0

)∥∥∥2

Eh

. (63)

Inequalities (62) and (63) imply∥∥∥(σ k+1, uk+1
)∥∥∥2

�h

≤ (ED +F)Dk
∥∥∥(σ 0 · n, u0

)∥∥∥2

Eh

,

and this concludes the proof. �
References

[1] W.H. Reed, T.R. Hill, Triangular Mesh Methods for the Neutron Transport Equation, Tech. Rep. LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.
[2] P. LeSaint, P.A. Raviart, On a finite element method for solving the neutron transport equation, in: C. de Boor (Ed.), Mathematical Aspects of Finite

Element Methods in Partial Differential Equations, Academic Press, 1974, pp. 89–145.
[3] C. Johnson, J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comput. 46 (173) (1986) 1–26.
[4] J. Douglas, T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Comput. Methods Appl. Sci. (1976) 207–216.
[5] M.F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal. 15 (1) (1978) 152–161.
[6] D.N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (4) (1982) 742–760.
[7] B. Cockburn, G.E. Karniadakis, C.-W. Shu, Discontinuous Galerkin Methods: Theory, Computation and Applications, Lecture Notes in Computational

Science and Engineering, vol. 11, Springer Verlag, Berlin, Heidelberg, New York, 2000.
[8] D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (5)

(2002) 1749–1779.
[9] B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order

elliptic problems, SIAM J. Numer. Anal. 47 (2009) 1319–1365.
[10] B. Cockburn, J. Gopalakrishnan, F.-J. Sayas, A projection-based error analysis of HDG methods, Math. Comput. 79 (271) (2010) 1351–1367.
[11] R.M. Kirby, S.J. Sherwin, B. Cockburn, To CG or to HDG: a comparative study, J. Sci. Comput. 51 (2012) 183–212.
[12] N.C. Nguyen, J. Peraire, B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for linear convection–diffusion equations, J.

Comput. Phys. 228 (2009) 3232–3254.
[13] B. Cockburn, B. Dong, J. Guzman, M. Restelli, R. Sacco, A hybridizable discontinuous Galerkin method for steady state convection–diffusion–reaction

problems, SIAM J. Sci. Comput. 31 (2009) 3827–3846.
[14] H. Egger, J. Schoberl, A hybrid mixed discontinuous Galerkin finite element method for convection–diffusion problems, IMA J. Numer. Anal. 30 (2010)

1206–1234.
[15] B. Cockburn, J. Gopalakrishnan, The derivation of hybridizable discontinuous Galerkin methods for Stokes flow, SIAM J. Numer. Anal. 47 (2) (2009)

1092–1125.
[16] N.C. Nguyen, J. Peraire, B. Cockburn, A hybridizable discontinous Galerkin method for Stokes flow, Comput. Methods Appl. Mech. Eng. 199 (2010)

582–597.
[17] N.C. Nguyen, J. Peraire, B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations,

J. Comput. Phys. 230 (2011) 1147–1170.
[18] D. Moro, N.C. Nguyen, J. Peraire, Navier–Stokes Solution Using Hybridizable Discontinuous Galerkin Methods, American Institute of Aeronautics and

Astronautics, 2011, 2011–3407.
[19] N.C. Nguyen, J. Peraire, B. Cockburn, Hybridizable discontinuous Galerkin method for the time harmonic Maxwell’s equations, J. Comput. Phys. 230

(2011) 7151–7175.
[20] L. Li, S. Lanteri, R. Perrrussel, A hybridizable discontinuous Galerkin method for solving 3D time harmonic Maxwell’s equations, in: Numerical Mathe-

matics and Advanced Applications 2011, Springer, 2013, pp. 119–128.
[21] N.C. Nguyen, J. Peraire, B. Cockburn, High-order implicit hybridizable discontinuous Galerkin method for acoustics and elastodynamics, J. Comput. Phys.

230 (2011) 3695–3718.
[22] R. Griesmaier, P. Monk, Error analysis for a hybridizable discontinous Galerkin method for the Helmholtz equation, J. Sci. Comput. 49 (2011) 291–310.
[23] J. Cui, W. Zhang, An analysis of HDG methods for the Helmholtz equation, IMA J. Numer. Anal. 34 (1) (2014) 279–295.
[24] T. Bui-Thanh, From Godunov to a unified hybridized discontinuous Galerkin framework for partial differential equations, J. Comput. Phys. 295 (2015)

114–146.
[25] T. Bui-Thanh, From Rankine–Hugoniot condition to a constructive derivation of HDG methods, in: Lecture Notes in Computational Sciences and Engi-

neering, Springer, 2015, pp. 483–491.
[26] T. Bui-Thanh, Construction and analysis of HDG methods for linearized shallow water equations, SIAM J. Sci. Comput. 38 (6) (2016) A3696–A3719.
[27] J. Wang, X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math. 241 (2013) 103–115.
[28] J. Wang, X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput. 83 (2014) 2101–2126.
[29] Q. Zhai, R. Zhang, X. Wang, A hybridized weak Galerkin finite element scheme for the stokes equations, Sci. China Math. 58 (11) (2015) 2455–2472.
[30] L. Mu, J. Wang, X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal. 35 (3) (2015) 1228–1255.
[31] J. Brown, Efficient nonlinear solvers for nodal high-order finite elements in 3D, J. Sci. Comput. 45 (1–3) (2010) 48–63.
[32] A. Crivellini, F. Bassi, An implicit matrix-free discontinuous Galerkin solver for viscous and turbulent aerodynamic simulations, Comput. Fluids 50 (1)

(2011) 81–93.
[33] D.A. Knoll, D.E. Keyes, Jacobian-free Newton–Krylov methods: a survey of approaches and applications, J. Comput. Phys. 193 (2) (2004) 357–397.
[34] P.-L. Lions, On the Schwarz alternating method, I, in: First International Symposium on Domain Decomposition Methods for Partial Differential Equa-

tions, Paris, 1987, SIAM, Philadelphia, PA, 1988, pp. 1–42.
[35] P.-L. Lions, On the Schwarz alternating method, II: stochastic interpretation and order properties, in: Domain Decomposition Methods, Los Angeles, CA,

1988, SIAM, Philadelphia, PA, 1989, pp. 47–70.

http://refhub.elsevier.com/S0021-9991(18)30258-4/bib5265656448696C6C3733s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4C655361696E74526176696172743734s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4C655361696E74526176696172743734s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4A6F686E736F6E5069746B6172616E74613836s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib646F75676C617331393736696E746572696F72s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib776865656C657231393738656C6C6970746963s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib61726E6F6C6431393832696E746572696F72s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib436F636B6275726E4B61726E696164616B69735368753030s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib436F636B6275726E4B61726E696164616B69735368753030s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib61726E6F6C6432303032756E6966696564s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib61726E6F6C6432303032756E6966696564s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib436F636B6275726E476F70616C616B726973686E616E4C617A61726F763039s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib436F636B6275726E476F70616C616B726973686E616E4C617A61726F763039s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib436F636B6275726E476F70616C616B726973686E616E53617961733130s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4B697262795368657277696E436F636B6275726E3132s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4E677579656E50657261697265436F636B6275726E303961s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4E677579656E50657261697265436F636B6275726E303961s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib436F636B6275726E446F6E6747757A6D616E4574416C3039s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib436F636B6275726E446F6E6747757A6D616E4574416C3039s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib45676765725363686F6265726C3130s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib45676765725363686F6265726C3130s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib436F636B6275726E476F70616C616B726973686E616E3039s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib436F636B6275726E476F70616C616B726973686E616E3039s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4E677579656E50657261697265436F636B6275726E3130s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4E677579656E50657261697265436F636B6275726E3130s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4E677579656E50657261697265436F636B6275726E3131s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4E677579656E50657261697265436F636B6275726E3131s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4D6F726F4E677579656E506572616972653131s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4D6F726F4E677579656E506572616972653131s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4E677579656E50657261697265436F636B6275726E313162s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4E677579656E50657261697265436F636B6275726E313162s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4C694C616E746572695065727272757373656C3133s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4C694C616E746572695065727272757373656C3133s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4E677579656E50657261697265436F636B6275726E313161s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4E677579656E50657261697265436F636B6275726E313161s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib47726965736D616965724D6F6E6B3131s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4375695A68616E673134s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4275692D5468616E683135s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4275692D5468616E683135s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4275692D5468616E68313561s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4275692D5468616E68313561s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib62756932303136636F6E737472756374696F6Es1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib57616E6759653133s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib57616E6759653134s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib5A6861695A68616E6757616E673135s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4D7557616E6759653134s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib42726F776E3130s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib63726976656C6C696E6932303131696D706C69636974s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib63726976656C6C696E6932303131696D706C69636974s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib6B6E6F6C6C323030346A61636F6269616Es1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4C696F6E733A313938373A4F5341s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4C696F6E733A313938373A4F5341s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4C696F6E733A313938393A4F5341s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4C696F6E733A313938393A4F5341s1

S. Muralikrishnan et al. / Journal of Computational Physics 367 (2018) 295–321 321
[36] P.-L. Lions, On the Schwarz alternating method, III: a variant for nonoverlapping subdomains, in: Third International Symposium on Domain Decom-
position Methods for Partial Differential Equations, Houston, TX, 1989, SIAM, Philadelphia, PA, 1990, pp. 202–223.

[37] L. Halpern, Optimized Schwarz waveform relaxation: roots, blossoms and fruits, in: Domain Decomposition Methods in Science and Engineering XVIII,
in: Lect. Notes Comput. Sci. Eng., vol. 70, Springer, Berlin, 2009, pp. 225–232.

[38] M.J. Gander, L. Gouarin, L. Halpern, Optimized Schwarz waveform relaxation methods: a large scale numerical study, in: Domain Decomposition
Methods in Science and Engineering XIX, in: Lect. Notes Comput. Sci. Eng., vol. 78, Springer, Heidelberg, 2011, pp. 261–268.

[39] M.J. Gander, S. Hajian, Analysis of Schwarz methods for a hybridizable discontinuous Galerkin discretization, SIAM J. Numer. Anal. 53 (1) (2015)
573–597.

[40] M.-B. Tran, Parallel Schwarz waveform relaxation method for a semilinear heat equation in a cylindrical domain, C. R. Math. Acad. Sci. Paris 348 (13–14)
(2010) 795–799.

[41] M.-B. Tran, A parallel four step domain decomposition scheme for coupled forward–backward stochastic differential equations, J. Math. Pures Appl.
96 (4) (2011) 377–394.

[42] M.-B. Tran, Overlapping domain decomposition: convergence proofs, in: Domain Decomposition Methods in Science and Engineering XX, Springer,
2013, pp. 493–500.

[43] M.-B. Tran, The behavior of domain decomposition methods when the overlapping length is large, Cent. Eur. J. Math. 12 (10) (2014) 1602–1614.
[44] B. Cockburn, O. Dubois, J. Gopalakrishnan, S. Tan, Multigrid for an HDG method, IMA J. Numer. Anal. (2013) 1–40.
[45] S. Muralikrishnan, M.-B. Tran, T. Bui-Thanh, iHDG: an iterative HDG framework for partial differential equations, SIAM J. Sci. Comput. 39 (5) (2017)

S782–S808.
[46] M.J. Gander, S. Hajian, Block Jacobi for discontinuous Galerkin discretizations: no ordinary Schwarz methods, in: Domain Decomposition Methods in

Science and Engineering XXI, Springer, 2014, pp. 305–313.
[47] M.J. Gander, S. Hajian, Analysis of Schwarz methods for a hybridizable discontinuous Galerkin discretization: the many subdomain case, arXiv:1603 .

04073.
[48] K.O. Friedrichs, Symmetric positive linear differential equations, Commun. Pure Appl. Math. XI (1958) 333–418.
[49] M.J. Gander, Analysis of the parareal algorithm applied to hyperbolic problems using characteristics, Bol. Soc. Esp. Mat. Apl. 42 (2008) 21–35.
[50] Z. Kaczkowski, The method of finite space–time elements in dynamics of structures, J. Tech. Phys. 16 (1) (1975) 69–84.
[51] J. Argyris, D. Scharpf, Finite elements in time and space, Nucl. Eng. Des. 10 (4) (1969) 456–464.
[52] J.T. Oden, A general theory of finite elements, II: applications, Int. J. Numer. Methods Eng. 1 (3) (1969) 247–259.
[53] C.M. Klaij, J.J. van der Vegt, H. van der Ven, Space–time discontinuous Galerkin method for the compressible Navier–Stokes equations, J. Comput. Phys.

217 (2) (2006) 589–611.
[54] T. Ellis, J. Chan, L. Demkowicz, Robust DPG methods for transient convection–diffusion, in: Building Bridges: Connections and Challenges in Modern

Approaches to Numerical Partial Differential Equations, Springer, 2016, pp. 179–203.
[55] S. Rhebergen, B. Cockburn, A space–time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains, J. Comput. Phys.

231 (11) (2012) 4185–4204.
[56] J.-L. Lions, Y. Maday, G. Turinici, Résolution d’edp par un schéma en temps pararéel, C. R. Acad. Sci., Ser. 1 Math. 332 (7) (2001) 661–668.
[57] I. Garrido, B. Lee, G. Fladmark, M. Espedal, Convergent iterative schemes for time parallelization, Math. Comput. 75 (255) (2006) 1403–1428.
[58] C. Farhat, M. Chandesris, Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications,

Int. J. Numer. Methods Eng. 58 (9) (2003) 1397–1434.
[59] Y. Maday, G. Turinici, A parareal in time procedure for the control of partial differential equations, C. R. Math. 335 (4) (2002) 387–392.
[60] M. Minion, A hybrid parareal spectral deferred corrections method, Commun. Appl. Math. Comput. Sci. 5 (2) (2011) 265–301.
[61] M.J. Gander, S. Vandewalle, Analysis of the parareal time-parallel time-integration method, SIAM J. Sci. Comput. 29 (2) (2007) 556–578.
[62] F.X. Giraldo, T. Warburton, A high-order triangular discontinous Galerkin oceanic shallow water model, Int. J. Numer. Methods Fluids 56 (2008)

899–925.
[63] J. Chan, Z. Wang, A. Modave, J.-F. Remacle, T. Warburton, GPU-accelerated discontinuous Galerkin methods on hybrid meshes, J. Comput. Phys. 318

(2016) 142–168.
[64] T. Warburton, J.S. Hesthaven, On the constants in hp-finite element trace inverse inequalities, Comput. Methods Appl. Mech. Eng. 192 (25) (2003)

2765–2773.
[65] M. Taylor, J. Tribbia, M. Iskandarani, The spectral element method for the shallow water equations on the sphere, J. Comput. Phys. 130 (1) (1997)

92–108.
[66] L.C. Wilcox, G. Stadler, C. Burstedde, O. Ghattas, A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic

media, J. Comput. Phys. 229 (24) (2010) 9373–9396.
[67] C. Burstedde, O. Ghattas, M. Gurnis, T. Isaac, G. Stadler, T. Warburton, L.C. Wilcox, Extreme-scale AMR, in: SC10: Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis, ACM/IEEE, 2010.
[68] C. Burstedde, O. Ghattas, M. Gurnis, E. Tan, T. Tu, G. Stadler, L.C. Wilcox, S. Zhong, Scalable adaptive mantle convection simulation on petascale

supercomputers, in: SC08: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, ACM/IEEE,
2008.

[69] R. Gandham, D. Medina, T. Warburton, GPU accelerated discontinuous Galerkin methods for shallow water equations, arXiv:1403 .1661.
[70] O. San, K. Kara, High-order accurate spectral difference method for shallow water equations, Int. J. Res. Rev. Appl. Sci. 6 (2011) 41–54.
[71] Y. Xing, X. Zhang, Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water equations on unstructured triangular

meshes, J. Sci. Comput. 57 (2013) 19–41.
[72] M. Weiser, A. Schiela, P. Deuflhard, Asymptotic mesh independence of Newton’s method revisited, SIAM J. Numer. Anal. 42 (5) (2005) 1830–1845.
[73] E. Allgower, K. Böhmer, Application of the mesh independence principle to mesh refinement strategies, SIAM J. Numer. Anal. 24 (6) (1987) 1335–1351.
[74] M. Christie, M. Blunt, et al., Tenth SPE comparative solution project: a comparison of upscaling techniques, in: SPE Reservoir Simulation Symposium,

Society of Petroleum Engineers, 2001.
[75] W.L. Briggs, S.F. McCormick, et al., A Multigrid Tutorial, vol. 72, Siam, 2000.
[76] U. Trottenberg, C.W. Oosterlee, A. Schuller, Multigrid, Academic Press, 2000.

http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4C696F6E733A313939303A4F5341s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4C696F6E733A313939303A4F5341s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib48616C7065726E3A4F534D3A32303039s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib48616C7065726E3A4F534D3A32303039s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib47616E646572476F756172696E48616C7065726E3A323031313A4F5357s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib47616E646572476F756172696E48616C7065726E3A323031313A4F5357s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib47616E64657248616A69616E3A323031353A41534Ds1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib47616E64657248616A69616E3A323031353A41534Ds1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib42696E6831s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib42696E6831s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib7472616E32303131706172616C6C656Cs1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib7472616E32303131706172616C6C656Cs1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib7472616E323031336F7665726C617070696E67s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib7472616E323031336F7665726C617070696E67s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib7472616E323031346265686176696F72s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib436F636B6275726E4475626F6973476F70616C616B726973686E616E4574416C3133s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib69484447s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib69484447s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib67616E64657232303134626C6F636Bs1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib67616E64657232303134626C6F636Bs1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib67616E64657232303136616E616C79736973s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib67616E64657232303136616E616C79736973s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib467269656472696368733538s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib67616E64657232303038616E616C79736973s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib6B61637A6B6F77736B69313937356D6574686F64s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib617267797269733139363966696E697465s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib6F64656E3139363967656E6572616Cs1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib6B6C61696A323030367370616365s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib6B6C61696A323030367370616365s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib656C6C697332303136726F62757374s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib656C6C697332303136726F62757374s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib72686562657267656E323031327370616365s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib72686562657267656E323031327370616365s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib6C696F6E73323030317265736F6C7574696F6Es1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib6761727269646F32303036636F6E76657267656E74s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib6661726861743230303374696D65s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib6661726861743230303374696D65s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib6D6164617932303032706172617265616Cs1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib6D696E696F6E32303131687962726964s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib67616E64657232303037616E616C79736973s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib476972616C646F576172627572746F6E3038s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib476972616C646F576172627572746F6E3038s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib6368616E32303136677075s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib6368616E32303136677075s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4D5231393836303232s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib4D5231393836303232s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib5441594C4F52313939373932s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib5441594C4F52313939373932s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib57696C636F78537461646C65724275727374656464654574416C3130s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib57696C636F78537461646C65724275727374656464654574416C3130s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib427572737465646465476861747461734775726E69734574416C3130s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib427572737465646465476861747461734775726E69734574416C3130s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib427572737465646465476861747461734775726E69734574416C3038s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib427572737465646465476861747461734775726E69734574416C3038s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib427572737465646465476861747461734775726E69734574416C3038s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib47616E6468616D4D6564696E61576172627572746F6E3134s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib53616E4B6172613131s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib58696E675A68616E673133s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib58696E675A68616E673133s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib776569736572323030356173796D70746F746963s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib616C6C676F776572313938376170706C69636174696F6Es1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib63687269737469653230303174656E7468s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib63687269737469653230303174656E7468s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib627269676773323030306D756C746967726964s1
http://refhub.elsevier.com/S0021-9991(18)30258-4/bib74726F7474656E62657267323030306D756C746967726964s1

	An improved iterative HDG approach for partial differential equations
	1 Introduction
	2 Upwind HDG framework
	3 iHDG methods
	4 iHDG-II for linear hyperbolic PDEs
	4.1 Transport equation
	4.2 Time-dependent transport equation
	4.2.1 Comparison of space-time iHDG and parareal methods for the scalar transport equation

	4.3 iHDG as a locally implicit method
	4.4 iHDG-II for system of linear hyperbolic PDEs

	5 iHDG-II for linear convection-diffusion PDEs
	5.1 First order form

	6 Numerical results
	6.1 Transport equation
	6.2 Linearized shallow water system
	6.3 Nonlinear shallow water system
	6.4 Linear convection-diffusion equation
	6.5 SPE10 test case

	7 Conclusions
	Acknowledgements
	Appendix A Proof of well-posedness of local solver of the iHDG-II method for the linear convection-diffusion equation
	Appendix B Proof of convergence of the iHDG-II method for the linear convection-diffusion equation
	References

