|CES REPORT 15-04

February 2015

Bayesis Optimal
by

Tan Bui-Thanh and Omar Ghattas

tor Coyy
e L/
& “uy

%3

i

&

——

ICE

- The University of Texas at Austin
SN ¢

ug |un°‘-“

@,

The Institute for Computational Engineering and Sciences
Austin, Texas 78712
'ffl)-s\pl_ll_"-‘-"“\'v‘"ﬁ

Reference: Tan Bui-Thanh and Omar Ghattas, "Bayesis Optimal," |ICES REPORT 15-04, The Institute for
Computational Engineering and Sciences, The University of Texas at Austin, February 2015.



Bayes is Optimal!

Tan Bui-Thanh
Department of Aerospace Engineering and Engineering Mechanics
Institute for Computational Engineering & Sciences
The University of Texas at Austin, Austin, TX 78712, USA.

Omar Ghattas
Institute for Computational Engineering & Sciences
Jackson School of Geosciences
Department of Mechanical Engineering

The University of Texas at Austin, Austin, TX 78712, USA
December 27, 2013

In this short note we construct a convex optimization problem whose first order op-
timality condition is exactly the Bayes’ formula and whose unique solution is precisely
the posterior distribution. In fact, the solution of our optimization problem includes the
usual Bayes’ posterior as a special case and it is therefore more general. We provide the
construction, and hence a generalized Bayes’ formula, for both finite and infinite dimen-
sional settings. We shall show that the our posterior distribution, and the Bayes’ one
as a special case, is optimal in the sense that it is the unique minimizer of an objective
function. We provide the detailed and constructive derivation of the objective function
using information theory and optimization technique. In particular, the objective is the
compromise of two quantities: 1) the relative entropy between the posterior and the
prior, and 2) the mean squared error between the computer model and the observation
data. As shall be shown, our posterior minimizes these two quantities simultaneously.

1 Finite dimensional case

In this note we exclusively tackle statistical inverse problems in which the task at hand is to combine
prior distribution and observation data to come up with a “better” distribution of some parameter
m in a parameter space M. In other words, we have (or are provided with) some prior knowledge
and we would like to update our knowledge as soon as the (noise-corrupted) data is available. The
Bayes’ framework provides a solution to such a problem. In this framework, we seek a statistical
description of all possible parameters that conform to some prior knowledge and at the same time
are consistent with the observation data. These parameters are distributed according to the so-
called posterior distribution. We ask ourselves if the Bayes paradigm is the best approach, if so, in
which sense? In this report, we provide an answer to this question.

To begin, let us introduce some notations. We denote by G (m) the computer prediction/model
of some finite dimensional output of interest. For simplicity, our computer model is assumed to
be exact, i.e. it is adequate, and the noise is Gaussian N (0, C) with C denoting the covariance
matrix. Under additive noise assumption, the observation data is given by

d:=G(m) +e, (1)



where € ~ N (0,C). Note that additive Gaussian noise is not a limitation. In fact it is simply
used to motivate our approach. As will be seen, the resulting formulation will be valid for any
likelihood model. We assume that the prior is distributed by mprior (m) and we seek an updated
distribution 7 (m) to incorporate information from the prior and the data. Bayes’ formula is one
way to accomplish this task. It says that the posterior distribution (the updated distribution) is
given by

Tike (d|m) X Tprior (m)

: (2)

os = oS d =
Tpost (m) Tpost (m‘ ) f/\/l Tlike (d‘m) X Tprior (m) dm

where, for the above assumption, the likelihood is

e () = exp (3 16 0m) — ).

That is, the posterior probability density is proportional to the product of the likelihood and the
prior probability density. To see whether Bayes’ formula (2) is the best in which sense, we approach
the problem of updating knowledge in a radical approach, namely, combining information theory
and optimization technique. From now on to the end of the report, we still call the updated
probability density 7 (m) as the posterior though it is not from the usual Bayes’ formula.

We begin by observing that there are two pieces of information available: the prior distribution
Tprior (M) and the data d. The former completely depends on our prior knowledge and/or our prior
belief while the latter is controlled by the ability to obtain the data.

From the information theory point of view, we should elicit the prior so that its discrepancy
relative to the (unknown) posterior is as small as possible. Turning this argument around, if we
believe that our prior is meaningful, the information gained in the posterior that we seek should
not be large. The relative lost or gain between two probability densities is precisely captured by
the relative entropy, also known as the Kullback-Leibler (KL) distance among many other names,

Dit () [ () = [ ()t () 3)

Tprior (m

Clearly when the posterior = (m) is identical to the prior mpor (m) the KL distance is zero, i.e, the
prior is perfect. On the other hand, when the posterior departs from the prior mpior (m), i.e., there
is discrepancy between our prior elicitation and the actual posterior, the KL distance is positive.

The other piece of information is the observation data d. In general, we like to match the data
as well as we can. Since the parameter is assumed to be distributed by the posterior, one way to
approximately match the data well is to look for a posterior that minimizes the mean squared error
between the computer prediction and the data, i.e.,

min % /M 7 (m) |G (m) — d||Z, dm = — /M 7 (m) log (ke (d|m)) dm. (4)

m(m)

It should be pointed out that, in the context of deterministic inverse problem, 1 [|G (m) — d”20 is
known as the misfit between the computer prediction and the data. The mean squared error is
simply the average of the misfit over the posterior distribution. One also notes that the last term
does not depend on the particular form of the data (1), and hence the likelihood model. To the
end of the report we shall work with this general form of the likelihood.

At this point we see that there is a competition between the prior knowledge and the information
from the data in the process of constructing the posterior. On the one hand the posterior should
follow the prior, if we believe that the prior is the best possible within our subjective capability, so
that the discrepancy in the prior modeling is minimized. On the other hand the posterior should
be constructed such that that the computer prediction matches the data well in the mean squared
sense. Note that the data is limited in general and only a few directions (regions) in the parameter



space are typically well-informed by the data. As a result, the posterior should compromise these
two sources of information such that it captures the limited directions provided by the data while
acting like the prior in the other directions. One way to construct such a posterior is to minimize
the KL distance (3) and the mean squared error simultaneously, i.e.,

m (m)

7rprior (m

min J := al/ 7r(m)log<
M

w(m)>0

))dm—a;A/Wmﬂgmmem»dm (5)

subject to

‘&ﬂ@mm:L (6)

where we have introduced two positive weights a; and ag to give us the freedom in making the
prior more important than the data and vice versa. We note that our optimization formulation
(5)—(6) is meaningful since it is a convex optimization problem with respect to 7 (m). As a result,
it has a unique solution and our next task is to find it.

In order to solve the optimization problem (5)—(6) we follow the Lagrangian formalism. In
particular, consider the following Lagrangian

L= a1/ 7 (m) log <7r(m)> dm—ag/ 7 (m) log (ke (d|m)) dm+y </ 7 (m) dm — 1) .
M Tprior (M) M M

Note that we have ignored the constraint 7 (m) > 0 since, as shall be shown, the posterior will

be automatically nonnegative. Taking the first variation of the Lagrangian with respect to v and

arguing that it must be zero for all variations we recover the constraint (6). Now taking the first

variation of the Lagrangian with respect to 7 (m) in the direction 7 (m) and arguing that it must

be zero for all 7 (m) we obtain

a1 + o
™ (m) = €xp <_ 1041 7) Tike (d‘m) 1 Tprior (m> y

which after substituting into the normalized constraint (6), becomes

a2
7 (m) = — ke (d!m); Tprior (M)

fM Tike (d‘m) 1 Tprior (m) dm

(7)

We define the unique solution (7) of our optimization problem (5)—(6) as the posterior distribution.
It should be emphasized that we have not postulated any particular form of the prior or the data
(likelihood) in order to obtain the posterior (7). Instead our posterior is simply a solution of the
optimization problem in which we try to compromise the information from the data and the prior
knowledge. Yet, it looks similar to the Bayes’ formula (2)! In fact when o = ag, i.e. the prior and
the likelihood are equally important, we rediscover the Bayes’ formula! In general our posterior (7)
is different from the Bayes’ posterior. Indeed it is more general since it includes Bayes’ formula as
a special case.

Remark 1. It might seem that our posterior is unusual at the first sight, it is in fact the Bayes’
formula for a statistical inverse problem whose log likelihood is equal to the usual Bayes’ log likelihood
times ag /oy

Remark 2. If we substitute the optimal posterior (7) into the cost function (5), the minimum cost,
after a simple algebra manipulation, is given by

min J = —a log [/ Tlike (d|m)% Tprior (M) dm (8)
Tpost (1ML M



2 Extension to infinite dimension

When the dimension of the parameter space M is infinite we no longer have the probability densities
Tprior (M) and et (M) (with respect to the usual Lebesgue measure). In that case, we have to
resort to using the prior and posterior distributions which are valid for both finite and infinite
dimensional settings. Let us define u (m) and v (m) as the prior and the posterior distributions,
respectively. Recall that in finite dimensional case, we have the following relations

dp = p(dm) = Tprior (M) dm, dv := v (dm) = mpes (M) dm.

The KL distance now becomes
dv
Dia. () (m) = [ o (57 )
M H
and similarly the mean squared error of the computer prediction provided that the parameter
distributed by the posterior is

;/M 16 (m) — d||% dv = — /M log (e (d[m)) dv.

Consequently, the optimization problem in this case reads
d
min J := al/ log (V) dv — ag/ log (Tike (d|m)) dv (9)
v(m) M dps M
subject to

/M =1 (10)

The Lagrangian in this case has the following form

[,:al/ log <dl/> duag/ log (ke (d|m)) dl/+’7/ dv — 7,
M dp M M

which is clearly a linear function in the posterior measure v. Thus, at stationary point of the
Lagrangian we must have

dv
a1 log (d/},) — aglog (mike (djm)) + v =0,

which is equivalent to

d ag
e (—O’jl> ke (d]m) o

and using the normalized constraint (10) we conclude that the optimal posterior distribution is

such that its Radon-Nikodym derivative with respect to the prior distribution is proportional to
the likelihood, i.e.,

dv ke (d!m)%
dp S s Thike (d[m) o1 dp
Clearly, (11) becomes (7) in the finite dimensional setting.

Similar to the finite dimensional case, if we substitute the optimal posterior measure given by
(11) into the cost function (9), then the smallest cost function is given by

(11)

a2
al

min J = —aq log [/ Tlike (d]m)ﬁ du| ,
M

v(m)
which is simplified to (8) when M is finite dimensional.
Remark 3. Note that the cost objective (9) is nonnegative and linear in v (which is nonnegative

by definition of probability measure). As a result, the posterior distribution v given by the Radon-
Nikodym derivative (11) is a unique solution of the optimization problem (9)—(10).



