Math 222a: Second Midterm Exam

7.00-8.15pm, Nov. 9, 2004.

Closed books, no notes, no calculators.
Question 1: No motivation is required for these questions (4p each): (There is no relation between the A 's in the five questions.)
(a) Is the set $H=\left\{\left[x_{1}, x_{2}\right]: x_{2} \geq 0\right\}$ a subspace of \mathbb{R}^{2} ?
(b) A is a 4×6 matrix such that the map $x \mapsto A x$ is onto \mathbb{R}^{4}. What is $\operatorname{Col}(A)$?
(c) A is a matrix such that $\operatorname{det}(A-\lambda I)=2 \lambda-4 \lambda^{2}+2 \lambda^{3}$.

What are the eigenvalues of A ?
(d) A is an $m \times n$ matrix of $\operatorname{rank} k$. What is $\operatorname{dim}(\operatorname{Nul}(A))$?
(e) A is a 3×3 matrix with eigenvalues $1,2,3$ and I is the 3×3 identity matrix. What is $\operatorname{dim}(\operatorname{Nul}(A-3 I))$?

Question 2: The matrix

$$
A=\left[\begin{array}{rrrrr}
2 & 1 & 0 & 0 & -1 \\
6 & 3 & -1 & 0 & 0 \\
-2 & -1 & -1 & 1 & 5 \\
4 & 2 & 0 & -2 & -4
\end{array}\right]
$$

is row equivalent to the matrix

$$
U=\left[\begin{array}{rrrrr}
2 & 1 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 & 3 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Give a basis for each of the following five spaces (4p each):
(a) $\operatorname{Col}(A)$
(b) $\operatorname{Row}(A)$
(c) $\operatorname{Nul}(A)$
(d) $\operatorname{Row}(U)$
(e) $\operatorname{Col}\left(A^{\mathrm{t}}\right)$

Give a (brief!) motivation for each answer.
Question 3: Consider the vectorspace \mathbb{P}^{3} (the space of all polynomials of degree at most 3) and its subspace

$$
H=\operatorname{Span}\left\{4-t+t^{2}-2 t^{3}, t+t^{2}+2 t^{3},-2+t+2 t^{3}\right\} .
$$

(a) Prove that $\mathcal{D}=\left\{2+t^{2}, t+t^{2}+2 t^{3}\right\}$ is a basis for H. (10p)
(b) The linear transformation $T: H \rightarrow \mathbb{P}^{3}$ is defined by

$$
T: c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3} \quad \mapsto \quad c_{1}+2 c_{2} t+3 c_{3} t^{2} .
$$

Determine a basis for $\operatorname{Ran}(T)$. (5p)
(c) What is $\operatorname{Nul}(T)$? (5p)

Question 4: The invertible matrix

$$
A=\left[\begin{array}{llll}
6 & 5 & 2 & 5 \\
5 & 6 & 5 & 2 \\
2 & 5 & 6 & 5 \\
5 & 2 & 5 & 6
\end{array}\right]
$$

has the eigenvectors

$$
v_{1}=\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right], \quad \text { and } \quad v_{2}=\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right]
$$

(a) Determine the eigenvalues λ_{1} and λ_{2} associated with v_{1} and v_{2}. (5p)
(b) Find an x such that $A x=2 v_{1}-v_{2}$. (8p)
(c) Let $B=A^{-1}$. Determine $B^{2} v_{2}$. (7 p)

Question 5: (20p) Let Q be a 3×3 matrix such that $Q Q^{\mathrm{t}}=Q^{\mathrm{t}} Q=I$, where I is the 3×3 identity matrix. Determine the eigenvalues of the matrix

$$
A=\left[\begin{array}{rr}
I & 2 Q^{\mathrm{t}} \\
2 Q & I
\end{array}\right]
$$

Hint 1: Compute $P P^{\mathrm{t}}$, where

$$
P=\left[\begin{array}{rr}
I & -Q^{\mathrm{t}} \\
Q & I
\end{array}\right]
$$

Hint 2: Can you use P in a similarity transform?

