Math 222a: First midterm exam

Time: $7.00 \mathrm{pm}-8.15 \mathrm{pm}$, Oct 5, 2004.
Closed books, no notes, no calculators.

Question 1: Consider the equation

$$
\begin{equation*}
A \boldsymbol{x}=\boldsymbol{b} \tag{1}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{rrrr}
1 & 2 & 0 & 1 \\
2 & 4 & -1 & 0 \\
1 & 2 & 1 & 3
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \quad \text { and } \quad \boldsymbol{b}=\left[\begin{array}{r}
1 \\
-1 \\
4
\end{array}\right] .
$$

(a) Construct all solutions of equation (1). (Your answer should for each x_{i} either give a formula or indicate that it is a free variable.)
(b) Does the equation $A \boldsymbol{x}=\boldsymbol{c}$ have a solution for every $\boldsymbol{c} \in \mathbb{R}^{3}$?
(c) Does there exist a $\boldsymbol{c} \in \mathbb{R}^{3}$ such that the equation $A \boldsymbol{x}=\boldsymbol{c}$ has a unique solution?

Question 2: Let A be a 4×3 matrix that through row operations can be transformed to the matrix

$$
A^{\prime}=\left[\begin{array}{lll}
1 & \times & \times \\
0 & 1 & \times \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right],
$$

where a cross denotes an arbitrary number.
(a) Is that map $\boldsymbol{x} \mapsto A \boldsymbol{x}$ onto?
(b) Are the columns of A linearly independent?
(c) Does there exist a $\boldsymbol{c} \in \mathbb{R}^{4}$ such that the equation $A \boldsymbol{x}=\boldsymbol{c}$ has a unique solution?

Question 3: Suppose that

$$
Z=A B C D E
$$

where A, B, C, D, E and Z are square matrices of the same size. Suppose further that A, B, D, E and Z are invertible. Prove that C is invertible and give a formula for C^{-1} (in terms of A, B, D, E, Z and their inverses).

Question 4: Let A be the matrix

$$
A=\left[\begin{array}{rrr}
1 & 2 & -1 \\
2 & 4 & -1 \\
-2 & -2 & 4
\end{array}\right]
$$

(a) Construct A^{-1}.
(b) Use your result from (a) to solve the following system of equations:
(c) Use your result from (a) to solve the following system of equations:

$$
\left\{\begin{array}{rlll}
x_{1} & +2 x_{2} & -2 x_{3} & =0 \\
2 x_{1} & +4 x_{2} & -2 x_{3} & =1 \\
-x_{1} & -x_{2} & +4 x_{3} & =0
\end{array}\right.
$$

Question 5: Suppose that
$\boldsymbol{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right], \quad \boldsymbol{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right], \quad \boldsymbol{v}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right], \quad$ and that $\quad \boldsymbol{v}_{4}=\left[\begin{array}{l}1 \\ t \\ 1 \\ 2\end{array}\right]$.
For what values of t does the set $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}\right\}$ span \mathbb{R}^{4} ?
Question 6: Suppose that $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right\}$ is a linearly independent set of m-dimensional column vectors, that the matrix A is given by

$$
A=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right],
$$

and that the equation

$$
A \boldsymbol{x}=\boldsymbol{b},
$$

does not have a solution.
(a) Prove that the set $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{b}\right\}$ is linearly independent.
(b) What can you say about m ?

