Homework 4, Math222a:

Problem 1: Let A be an $m \times n$ matrix of rank k. Provided that m, n, k are as in the top row, please answer questions 1 through 6 in the table below.

	$m>n>k$	$m>n=k$	$m=n=k$	$m=n>k$	$n>m=k$	$n>m>k$
Q1:						
Q2:						
Q3:						
Q4:						
Q5:						
Q6:						

Q1: Is it the case that $\operatorname{span}(A)=\mathbb{R}^{m}$?
Q2: Is it the case that $A \boldsymbol{x}=\boldsymbol{b}$ always has a solution?
Q3: Is the map $\boldsymbol{x} \mapsto A \boldsymbol{x}$ onto?
Q4: Are the columns of A linearly independent?
Q5: Provided that $A \boldsymbol{x}=\boldsymbol{b}$ is consistent, is the solution unique?
Q6: Is the map $\boldsymbol{x} \mapsto A \boldsymbol{x}$ one-to-one?
Problem 2: Consider the map

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
-x_{1} \\
x_{2}
\end{array}\right] .
$$

- Is T linear?
- If T is linear, what is its standard matrix?
- Is T onto?
- Is T one-to-one?
- Make two sketches similar to Fig. 6 in ch. 1.8 showing the geometric action of T.

Also do:

Section 1.6: 6,8
Section 1.8: 6,20,26,32
Section 1.9: 6,8,10,24,30,36

