Math 222, Fall 2004: Final Exam

- Closed books, no notes, no calculators.
- Upper case letters denote matrices, boldface lower case letter vectors, and plain lower case letters scalars.
- The transpose of a matrix A is denoted A^{t}.
- The identity matrix is denoted I.
- A matrix U is said to be orthogonal if $U^{\mathrm{t}} U=I$.
- In questions $2-6$, please provide brief explanations for the steps in your calculations.

Question 1: There is no connection between the matrices and the vectors in the following questions. No motivation is required. (2p each)
(a) Suppose that A is an $m \times n$ matrix of rank k. What is $\operatorname{dim}(\operatorname{Col}(A))$?
(b) Suppose that there exists a non-zero vector \mathbf{y} such that $A \mathbf{y}=0$. Does there exist a vector \mathbf{b} such that the equation $A \mathbf{x}=\mathbf{b}$ has a unique solution?
(c) Is it true that λ is an eigenvalue of A if and only if $\operatorname{det}(A-\lambda I)=0$?
(d) Is it true that all square matrices are diagonalizable?
(e) What conditions must a matrix satisfy for it to have a singular value decomposition?
(f) Complete the sentence: If A and B are matrices, then every row of $A B$ is a linear combination of the rows of the matrix
(g) Suppose that \mathbf{q}_{1} and \mathbf{q}_{2} are two non-zero vectors in \mathbb{R}^{n} such that $\mathbf{q}_{1}+t \mathbf{q}_{2} \neq 0$ for all t. What is $\operatorname{dim}\left(\operatorname{Span}\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{1}+\mathbf{q}_{2}\right\}\right) ?$
(h) Suppose that A is an $m \times n$ matrix of rank n, that $\mathbf{b} \in \operatorname{Col}(A)^{\perp}$ and that $\mathbf{b} \neq 0$. How many solutions does the equation $A \mathbf{x}=\mathbf{b}$ have?
(i) Suppose that H is a subspace of \mathbb{R}^{n} of dimension k, where $k<n$. What is the dimension of H^{\perp} ?
(j) Give a matrix A such that $2 x_{1}^{2}+x_{1} x_{2}-x_{2}^{2}=\mathbf{x}^{\mathrm{t}} A \mathbf{x}$, where $\mathbf{x}^{\mathrm{t}}=\left[x_{1} x_{2}\right]$.
(k) What is the largest possible singular value of an orthogonal matrix?

Question 2: Consider the equation

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{1}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{rrrrr}
1 & 1 & 2 & 1 & 0 \\
-1 & 1 & -2 & -1 & 1 \\
1 & 1 & 2 & 2 & 1 \\
1 & 5 & 2 & 2 & 3
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right], \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{l}
2 \\
1 \\
0 \\
6
\end{array}\right]
$$

(a) Find all \mathbf{x} that solve (1). Your answer should either give an explicit formula for each x_{i} or indicate that it is a free variable. (10p)
(b) Give a basis for $\operatorname{Row}(A)$. (5p)
(c) Give a basis for $\operatorname{Col}(A)$. (5p)

Question 3: Consider \mathbb{P}^{3}, the vector space of polynomials of degree 3 or less, and its subspace

$$
H=\operatorname{Span}\left\{1+t+2 t^{3}, 1+3 t-4 t^{2}, 2+2 t+4 t^{3}, 1+t+t^{2}+2 t^{3}\right\}
$$

(a) Does the vector $\mathbf{p}(t)=2+2 t-t^{2}+4 t^{3}$ belong to H ? (7 p)
(b) What is the dimension of H ? (3p)

Question 4: Consider the matrices

$$
U=\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

and set

$$
A=U D U^{\mathrm{t}} .
$$

Note that U is orthogonal.
(a) What are the eigenvalues of A ? (5p)
(b) Let \mathbf{u}_{2} denote the second column of U. What is $A \mathbf{u}_{2}$? (5p)
(c) Determine an orthogonal matrix P, and a diagonal matrix E, such that $A^{2}+A^{-1}=P E P^{\mathrm{t}}$. (5p)

Question 5: Consider the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-2
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
0 \\
2 \\
6
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right],
$$

(note that $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=0$) and set

$$
V=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}
$$

(a) Set $\mathbf{q}_{1}=\mathbf{v}_{1} /\left\|\mathbf{v}_{1}\right\|, \mathbf{q}_{2}=\mathbf{v}_{2} /\left\|\mathbf{v}_{2}\right\|$, and determine a vector \mathbf{q}_{3} such that $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right\}$ forms an orthonormal basis for V. (8 p)
(b) Set $A=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right], Q=\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right]$, and find an upper triangular matrix R such that $A=Q R$. (6p)
(c) Find a vector $\mathbf{z} \in V$ such that $\|\mathbf{b}-\mathbf{z}\| \leq\|\mathbf{b}-\mathbf{y}\|$ for all $\mathbf{y} \in V$. (6p)

Question 6: If A is an $n \times n$ invertible matrix, and if \mathbf{u} and \mathbf{v} are $n \times 1$ vectors such that $A+\mathbf{u v}^{\mathrm{t}}$ is invertible, then

$$
\begin{equation*}
\left(A+\mathbf{u} \mathbf{v}^{\mathrm{t}}\right)^{-1}=A^{-1}-\beta A^{-1} \mathbf{u v}^{\mathrm{t}} A^{-1} \tag{2}
\end{equation*}
$$

where

$$
\beta=\frac{1}{1+\mathbf{v}^{\mathrm{t}} A^{-1} \mathbf{u}} .
$$

(a) Use formula (2) to compute the inverse of

$$
B=\left[\begin{array}{lllll}
6 & 1 & 1 & 1 & 1 \\
1 & 6 & 1 & 1 & 1 \\
1 & 1 & 6 & 1 & 1 \\
1 & 1 & 1 & 6 & 1 \\
1 & 1 & 1 & 1 & 6
\end{array}\right]
$$

(7p) Hint: Set $\left.\mathbf{u}=\mathbf{v}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]\right]^{\mathrm{t}}$.
(b) Prove the formula (2). (8p) Hint: Set $X=A^{-1}-\beta A^{-1} \mathbf{u v}^{\mathrm{t}} A^{-1}$, prove that $\left(A+\mathbf{u v}^{\mathrm{t}}\right) X A=A$, and solve for X.

Remark: As a curiousity, the formula (2) is a special case of something called the Sherman-Morrison-Woodbury formula which says that

$$
\begin{equation*}
\left(A+U V^{\mathrm{t}}\right)^{-1}=A^{-1}-A^{-1} U\left(I+V^{\mathrm{t}} A^{-1} U\right) V^{\mathrm{t}} A^{-1} \tag{3}
\end{equation*}
$$

where A is an invertible $n \times n$ matrix, and U and V are $n \times k$ matrices such that $A+U V^{\mathrm{t}}$ is invertible. The formula (3) is very useful in cases where one knows A and wants to compute the inverse of a slightly perturbed version of A (say only a couple of elements changed).
/// PG Martinsson, Dec 17, 2004

