APPM 4720/5720 - week 15:

$O(N)$ inversion of rank-structured matrices

Gunnar Martinsson
The University of Colorado at Boulder

Recall: A very simple format for rank-structured matrices ...

We informally say that a matrix is in \mathcal{S}-format if it can be tesselated "like this":

We require that

- the diagonal blocks are of size at most $2 k \times 2 k$
- the off-diagonal blocks (in blue in the figure) have rank at most k.

The cost of performing a matvec is then

$$
\underbrace{2 \times \frac{N}{2} k+4 \times \frac{N}{4} k+8 \times \frac{N}{8} k+\cdots}_{\log N \text { terms }} \sim N \log (N) k
$$

Note: The " S " in " \mathcal{S}-matrix" is for Simple — the term is not standard by any means ...

Recall that inversion of an \mathcal{S}-matrix is a rather complicated operation - multiple traversals up and down the tree, various log-factors in complexity estimates, etc. To overcome these problems and attain $O(N)$ complexity, let us first introduce so called block separable matrices. Consider a linear system

$$
\mathbf{A} \mathbf{q}=\mathbf{f}
$$

where \mathbf{A} is a "block-separable" matrix consisting of $p \times p$ blocks of size $n \times n$:

$$
\mathbf{A}=\left[\begin{array}{cccc}
\mathbf{D}_{4} & \mathbf{A}_{45} & \mathbf{A}_{46} & \mathbf{A}_{47} \\
\mathbf{A}_{54} & \mathbf{D}_{5} & \mathbf{A}_{56} & \mathbf{A}_{57} \\
\mathbf{A}_{64} & \mathbf{A}_{65} & \mathbf{D}_{6} & \mathbf{A}_{67} \\
\mathbf{A}_{74} & \mathbf{A}_{75} & \mathbf{A}_{76} & \mathbf{D}_{7}
\end{array}\right] . \quad \text { (Shown for } p=4 . \text {.) }
$$

Core assumption: Each off-diagonal block $\mathbf{A}_{i j}$ admits the factorization

$$
\begin{gathered}
\mathbf{A}_{i j}=\mathbf{U}_{i} \quad \tilde{\mathbf{A}}_{i j} \quad \mathbf{V}_{j}^{*} \\
n \times n \quad n \times k
\end{gathered}
$$

where the rank k is significantly smaller than the block size n.
The critical part of the assumption is that all off-diagonal blocks in the i 'th row use the same basis matrices \mathbf{U}_{i} for their column spaces (and analogously all blocks in the j'th column use the same basis matrices \mathbf{V}_{j} for their row spaces).

What is the role of the basis matrices \mathbf{U}_{τ} and \mathbf{V}_{τ} ?
Recall our toy example: $\mathbf{A}=\left[\begin{array}{ccccc}\mathbf{D}_{4} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{45} \mathbf{V}_{5}^{*} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{46} \mathbf{V}_{6}^{*} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{47} \mathbf{V}_{7}^{*} \\ \mathbf{U}_{5} \tilde{A}_{54} \mathbf{V}_{4}^{*} & \mathbf{D}_{5} & \mathbf{U}_{5} \tilde{A}_{56} \mathbf{V}_{6}^{*} & \mathbf{U}_{5} \tilde{\mathbf{A}}_{57} \mathbf{V}_{7}^{*} \\ \mathbf{U}_{6} \tilde{\mathbf{A}}_{64} \mathbf{V}_{4}^{*} & \mathbf{U}_{6} \tilde{\mathbf{A}}_{65} \mathbf{V}_{5}^{*} & \mathbf{D}_{6} & \mathbf{U}_{6} \tilde{\mathbf{A}}_{67} \mathbf{V}_{7}^{*} \\ \mathbf{U}_{7} \tilde{\mathbf{A}}_{74} \mathbf{V}_{4}^{*} & \mathbf{U}_{7} \tilde{\mathbf{A}}_{75} \mathbf{V}_{5}^{*} & \mathbf{U}_{7} \tilde{\mathbf{A}}_{76} & \mathbf{V}_{6}^{*} & \mathbf{D}_{7}\end{array}\right]$.

We see that the columns of U_{4} must span the column space of the matrix $\mathbf{A}\left(I_{4}, I_{4}^{c}\right)$ where I_{4} is the index vector for the first block and $I_{4}^{c}=\Lambda I_{4}$.

The matrix \mathbf{A}

What is the role of the basis matrices \mathbf{U}_{τ} and \mathbf{V}_{τ} ?
Recall our toy example: $\mathbf{A}=\left[\begin{array}{ccccc}\mathbf{D}_{4} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{45} \mathbf{V}_{5}^{*} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{46} \mathbf{V}_{6}^{*} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{47} \mathbf{V}_{7}^{*} \\ \mathbf{U}_{5} \tilde{\mathbf{A}}_{54} \mathbf{V}_{4}^{*} & \mathbf{D}_{5} & \mathbf{U}_{5} \tilde{\mathbf{A}}_{56} \mathbf{V}_{6}^{*} & \mathbf{U}_{5} \tilde{\mathbf{A}}_{57} \mathbf{V}_{7}^{*} \\ \mathbf{U}_{6} \tilde{\mathbf{A}}_{64} \mathbf{V}_{4}^{*} & \mathbf{U}_{6} \tilde{\mathbf{A}}_{65} \mathbf{V}_{5}^{*} & \mathbf{D}_{6} & \mathbf{U}_{6} \tilde{\mathbf{A}}_{67} \mathbf{V}_{7}^{*} \\ \mathbf{U}_{7} \tilde{\mathbf{A}}_{74} \mathbf{V}_{4}^{*} & \mathbf{U}_{7} \tilde{\mathbf{A}}_{75} \mathbf{V}_{5}^{*} & \mathbf{U}_{7} \tilde{\mathbf{A}}_{76} & \mathbf{V}_{6}^{*} & \mathbf{D}_{7}\end{array}\right]$.

We see that the columns of U_{5} must span the column space of the matrix $\mathbf{A}\left(I_{5}, I_{5}^{c}\right)$ where I_{5} is the index vector for the first block and $I_{5}^{c}=\Lambda I_{5}$.

The matrix A

Recall $\mathbf{A}=\left[\begin{array}{ccccc}\mathbf{D}_{4} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{45} \mathbf{V}_{5}^{*} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{46} \mathbf{V}_{6}^{*} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{47} \mathbf{V}_{7}^{*} \\ \mathbf{U}_{5} \tilde{\mathbf{A}}_{54} & \mathbf{V}_{4}^{*} & \mathbf{D}_{5} & \mathbf{U}_{5} \tilde{\mathbf{A}}_{56} \mathbf{V}_{6}^{*} & \mathbf{U}_{5} \tilde{A}_{57} \mathbf{V}_{7}^{*} \\ \mathbf{U}_{6} \tilde{\mathbf{A}}_{64} \mathbf{V}_{4}^{*} & \mathbf{U}_{6} \tilde{\mathbf{A}}_{65} \mathbf{V}_{5}^{*} & \mathbf{D}_{6} & \mathbf{U}_{6} \tilde{\mathbf{A}}_{67} \mathbf{V}_{7}^{*} \\ \mathbf{U}_{7} \tilde{\mathbf{A}}_{74} \mathbf{V}_{4}^{*} & \mathbf{U}_{7} \tilde{\mathbf{A}}_{75} & \mathbf{V}_{5}^{*} & \mathbf{U}_{7} \tilde{\mathbf{A}}_{76} \mathbf{V}_{6}^{*} & \mathbf{D}_{7}\end{array}\right]$
Then \mathbf{A} admits the factorization:

$$
\mathbf{A}=\underbrace{\left[\begin{array}{llll}
\mathbf{U}_{4} & & & \\
& \mathbf{U}_{5} & & \\
& & \mathbf{U}_{6} & \\
& & & \mathbf{U}_{7}
\end{array}\right]}_{=\mathbf{U}} \underbrace{\left[\begin{array}{cccc}
\mathbf{0} & \tilde{\mathbf{A}}_{45} & \tilde{\mathbf{A}}_{46} & \tilde{\mathbf{A}}_{47} \\
\tilde{\mathbf{A}}_{54} & \mathbf{0} & \tilde{\mathbf{A}}_{56} & \tilde{\mathbf{A}}_{57} \\
\tilde{\mathbf{A}}_{64} & \tilde{\mathbf{A}}_{65} & \mathbf{0} & \tilde{\mathbf{A}}_{67} \\
\tilde{\mathbf{A}}_{74} & \tilde{\mathbf{A}}_{75} & \tilde{\mathbf{A}}_{76} & \mathbf{0}
\end{array}\right]}_{=\tilde{\mathbf{A}}} \underbrace{\left[\begin{array}{llll}
\mathbf{V}_{4}^{*} & & & \\
& \mathbf{V}_{5}^{*} & & \\
& & \mathbf{V}_{6}^{*} & \\
& & & \mathbf{V}_{7}^{*}
\end{array}\right]}_{=\mathbf{\mathbf { V } ^ { * }}}+\underbrace{\left[\begin{array}{llll}
\mathbf{D}_{4} & & & \\
& \mathbf{D}_{5} & & \\
& & & \\
& & \mathbf{D}_{6} & \\
& & \mathbf{D}_{7}
\end{array}\right]}_{=\mathbf{D}}
$$

or

Lemma: [Variation of Woodbury] If an $N \times N$ matrix \mathbf{A} admits the factorization

then
$\mathbf{A}^{-1}=\mathbf{E}(\tilde{\mathbf{A}}+\hat{\mathbf{D}})^{-1} \quad \mathbf{F}^{*}+\quad \mathbf{G}$,

where (provided all intermediate matrices are invertible)

$$
\hat{\mathbf{D}}=\left(\mathbf{V}^{*} \mathbf{D}^{-1} \mathbf{U}\right)^{-1}, \quad \mathbf{E}=\mathbf{D}^{-1} \mathbf{U} \hat{\mathbf{D}}, \quad \mathbf{F}=\left(\hat{\mathbf{D}} \mathbf{V}^{*} \mathbf{D}^{-1}\right)^{*}, \quad \mathbf{G}=\mathbf{D}^{-1}-\mathbf{D}^{-1} \mathbf{U} \hat{\mathbf{D}} \mathbf{V}^{*} \mathbf{D}^{-1} .
$$

Note: All matrices set in blue are block diagonal.
Classical Woodbury: $\left(\mathbf{D}+\mathbf{U} \tilde{A} \mathbf{V}^{*}\right)^{-1}=\mathbf{D}^{-1}-\mathbf{D}^{-1} \mathbf{U}\left(\tilde{\mathbf{A}}+\mathbf{V}^{*} \mathbf{D}^{-1} \mathbf{U}\right)^{-1} \mathbf{V}^{*} \mathbf{D}^{-1}$.

Derivation of "our" Woodbury: We consider the linear system

$$
\left[\begin{array}{cccc}
\mathbf{D}_{4} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{45} \mathbf{V}_{5}^{*} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{46} \mathbf{V}_{6}^{*} \mathbf{U}_{4} \tilde{\mathbf{A}}_{47} \mathbf{V}_{7}^{*} \\
\mathbf{U}_{5} \tilde{A}_{54} \mathbf{V}_{4}^{*} & \mathbf{D}_{5} & \mathbf{U}_{5} \tilde{\mathbf{A}}_{56} \mathbf{V}_{6}^{*} \mathbf{U}_{5} \tilde{\mathbf{A}}_{57} \mathbf{V}_{7}^{*} \\
\mathbf{U}_{6} \tilde{\mathbf{A}}_{64} \mathbf{V}_{4}^{*} \mathbf{U}_{6} \tilde{\mathbf{A}}_{65} \mathbf{V}_{5}^{*} & \mathbf{D}_{6} & \mathbf{U}_{6} \tilde{\mathbf{A}}_{67} \mathbf{V}_{7}^{*} \\
\mathbf{U}_{7} \tilde{\mathbf{A}}_{74} \mathbf{V}_{4}^{*} & \mathbf{U}_{7} \tilde{\mathbf{A}}_{75} \mathbf{V}_{5}^{*} & \mathbf{U}_{7} \tilde{\mathbf{A}}_{76} \mathbf{V}_{6}^{*} & \mathbf{D}_{7}
\end{array}\right]\left[\begin{array}{c}
\mathbf{q}_{4} \\
\mathbf{q}_{5}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{f}_{4} \\
\mathbf{f}_{5} \\
\mathbf{f}_{6} \\
\mathbf{q}_{6} \\
\mathbf{q}_{7} \\
\mathbf{q}_{7}
\end{array}\right] .
$$

Introduce reduced variables $\tilde{\mathbf{q}}_{i}=\mathbf{V}_{i}^{*} \mathbf{q}_{i}$.
The system $\sum_{j} \mathbf{A}_{i j} \boldsymbol{q}_{j}=\mathbf{f}_{i}$ then takes the form

$$
\left[\begin{array}{cccc|cccc}
\mathbf{D}_{4} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{45} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{46} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{47} \\
\mathbf{0} & \mathbf{D}_{5} & \mathbf{0} & \mathbf{0} & \mathbf{U}_{5} \tilde{\mathbf{A}}_{54} & \mathbf{0} & \mathbf{U}_{5} \tilde{\mathbf{A}}_{56} & \mathbf{U}_{5} \tilde{\mathbf{A}}_{57} \\
\mathbf{0} & \mathbf{0} & \mathbf{D}_{6} & \mathbf{0} & \mathbf{U}_{6} \tilde{\mathbf{A}}_{64} \mathbf{U}_{6} \tilde{\mathbf{A}}_{65} & \mathbf{0} & \mathbf{U}_{6} \tilde{\mathbf{A}}_{67} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{D}_{7} & \mathbf{U}_{7} \tilde{\mathbf{A}}_{74} & \mathbf{U}_{7} \tilde{\mathbf{A}}_{75} & \mathbf{U}_{7} \tilde{\mathbf{A}}_{76} & \mathbf{0} \\
\hline-\mathbf{V}_{4}^{*} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{I} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & -\mathbf{V}_{5}^{*} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & -\mathbf{V}_{6}^{*} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & -\mathbf{V}_{7}^{*} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1}
\end{array}\right]\left[\begin{array}{c}
\mathbf{q}_{4} \\
\mathbf{q}_{5} \\
\mathbf{q}_{6} \\
\mathbf{q}_{7} \\
\tilde{\mathbf{q}}_{4} \\
\tilde{\mathbf{q}}_{5} \\
\tilde{\mathbf{q}}_{6} \\
\tilde{\mathbf{q}}_{7}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{f}_{4} \\
\mathbf{f}_{5} \\
\mathbf{f}_{6} \\
\mathbf{f}_{7} \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right],
$$

Now form the Schur complement to eliminate the \mathbf{q}_{j} 's.

After eliminating the "fine-scale" variables \mathbf{q}_{i}, we obtain

$$
\left[\begin{array}{cccc}
\mathbf{I} & \mathbf{V}_{4}^{*} \tilde{\mathbf{A}}_{44}^{-1} \mathbf{U}_{4} \tilde{\mathbf{A}}_{45} & \mathbf{V}_{4}^{*} \tilde{\mathbf{A}}_{44}^{-1} \mathbf{U}_{4} \tilde{\mathbf{A}}_{46} & \mathbf{V}_{4}^{*} \tilde{\mathbf{A}}_{44}^{-1} \mathbf{U}_{4} \tilde{\mathbf{A}}_{47} \\
\mathbf{V}_{5}^{*} \tilde{\mathbf{A}}_{55}^{-1} \mathbf{U}_{5} \tilde{\mathbf{A}}_{54} & \mathbf{I} & \mathbf{V}_{5}^{*} \tilde{\mathbf{A}}_{55}^{-1} \mathbf{U}_{5} \tilde{\mathbf{A}}_{56} & \mathbf{V}_{5}^{*} \tilde{\mathbf{A}}_{55}^{-1} \mathbf{U}_{5} \tilde{\mathbf{A}}_{57} \\
\mathbf{V}_{6}^{*} \tilde{\mathbf{A}}_{66}^{-1} \mathbf{U}_{6} \tilde{\mathbf{A}}_{61} & \mathbf{V}_{6}^{*} \tilde{\mathbf{A}}_{66}^{-1} \mathbf{U}_{6} \tilde{\mathbf{A}}_{65} & \mathbf{I} & \mathbf{V}_{6}^{*} \tilde{\mathbf{A}}_{66}^{-1} \mathbf{U}_{6} \tilde{\mathbf{A}}_{67} \\
\mathbf{V}_{7}^{*} \tilde{\mathbf{A}}_{77}^{-1} \mathbf{U}_{7} \tilde{\mathbf{A}}_{74} & \mathbf{V}_{7}^{*} \tilde{\mathbf{A}}_{77}^{-1} \mathbf{U}_{7} \tilde{\mathbf{A}}_{75} & \mathbf{V}_{7}^{*} \tilde{\mathbf{A}}_{77}^{-1} \mathbf{U}_{7} \tilde{\mathbf{A}}_{76} & \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\tilde{\mathbf{q}}_{4} \\
\tilde{\mathbf{q}}_{5} \\
\tilde{\mathbf{q}}_{6} \\
\tilde{\mathbf{q}}_{7}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{V}_{4}^{*} \mathbf{D}_{4}^{-1} \mathbf{f}_{4} \\
\mathbf{V}_{5}^{*} \mathbf{D}_{5}^{-1} \mathbf{f}_{5} \\
\mathbf{V}_{6}^{*} \mathbf{D}_{6}^{-1} \mathbf{f}_{6} \\
\mathbf{V}_{7}^{*} \mathbf{D}_{7}^{-1} \mathbf{f}_{77}
\end{array}\right]
$$

After eliminating the "fine-scale" variables \mathbf{q}_{i}, we obtain

$$
\left[\begin{array}{cccc}
\mathbf{I} & \mathbf{V}_{4}^{*} \tilde{\mathbf{A}}_{44}^{-1} \mathbf{U}_{4} \tilde{\mathbf{A}}_{45} & \mathbf{V}_{4}^{*} \tilde{\mathbf{A}}_{44}^{-1} \mathbf{U}_{4} \tilde{\mathbf{A}}_{46} & \mathbf{V}_{4}^{*} \tilde{\mathbf{A}}_{44}^{-1} \mathbf{U}_{4} \tilde{\mathbf{A}}_{47} \\
\mathbf{V}_{5}^{*} \tilde{\mathbf{A}}_{55}^{-1} \mathbf{U}_{5} \tilde{\mathbf{A}}_{54} & \mathbf{I} & \mathbf{V}_{5}^{*} \tilde{\mathbf{A}}_{55}^{-1} \mathbf{U}_{5} \tilde{\mathbf{A}}_{56} & \mathbf{V}_{5}^{*} \tilde{A}_{55}^{-1} \mathbf{U}_{5} \tilde{\mathbf{A}}_{57} \\
\mathbf{V}_{6}^{*} \tilde{\mathbf{A}}_{66}^{-1} \mathbf{U}_{6} \tilde{\mathbf{A}}_{61} & \mathbf{V}_{6}^{*} \tilde{\mathbf{A}}_{66}^{-1} \mathbf{U}_{6} \tilde{\mathbf{A}}_{65} & \mathbf{I} & \mathbf{V}_{6}^{*} \tilde{A}_{66}^{-1} \mathbf{U}_{6} \tilde{\mathbf{A}}_{67} \\
\mathbf{V}_{7}^{*} \tilde{\mathbf{A}}_{77}^{-1} \mathbf{U}_{7} \tilde{\mathbf{A}}_{74} & \mathbf{V}_{7}^{*} \tilde{\mathbf{A}}_{77}^{-1} \mathbf{U}_{7} \tilde{\mathbf{A}}_{75} & \mathbf{V}_{7}^{*} \tilde{\mathbf{A}}_{77}^{-1} \mathbf{U}_{7} \tilde{\mathbf{A}}_{76} & \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\tilde{\mathbf{q}}_{4} \\
\tilde{\mathbf{q}}_{5} \\
\tilde{\mathbf{q}}_{6} \\
\tilde{\mathbf{q}}_{7}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{V}_{4}^{*} \mathbf{D}_{4}^{-1} \mathbf{f}_{4} \\
\mathbf{V}_{5}^{*} \mathbf{D}_{5}^{-1} \mathbf{f}_{5} \\
\mathbf{V}_{6}^{*} \mathbf{D}_{6}^{-1} \mathbf{f}_{6} \\
\mathbf{V}_{7}^{*} \mathbf{D}_{7}^{-1} \mathbf{f}_{7} .
\end{array}\right]
$$

We set

$$
\tilde{\mathbf{A}}_{i j}=\left(\mathbf{V}_{i}^{*} \mathbf{D}_{i j}^{-1} \mathbf{u}_{i}\right)^{-1}
$$

and multiply line i by $\tilde{\mathbf{A}}_{i j}$ to obtain the reduced system

$$
\left[\begin{array}{llll}
\tilde{\mathbf{A}}_{44} & \tilde{\mathbf{A}}_{45} & \tilde{\mathbf{A}}_{66} & \tilde{\mathbf{A}}_{47} \\
\tilde{\mathbf{A}}_{54} & \tilde{\mathbf{A}}_{55} & \tilde{\mathbf{A}}_{56} & \tilde{\mathbf{A}}_{57} \\
\tilde{\mathbf{A}}_{64} & \tilde{\mathbf{A}}_{65} & \tilde{\mathbf{A}}_{66} & \tilde{\mathbf{A}}_{67} \\
\tilde{\mathbf{A}}_{74} & \tilde{\mathbf{A}}_{75} & \tilde{\mathbf{A}}_{76} & \tilde{\mathbf{A}}_{77}
\end{array}\right]\left[\begin{array}{c}
\tilde{\mathbf{q}}_{4} \\
\tilde{\mathbf{q}}_{5} \\
\tilde{\mathbf{q}}_{6} \\
\tilde{\mathbf{q}}_{7}
\end{array}\right]=\left[\begin{array}{c}
\tilde{\mathbf{f}}_{4} \\
\tilde{\mathbf{f}}_{5} \\
\tilde{\mathbf{f}}_{6} \\
\tilde{\mathbf{f}}_{7}
\end{array}\right] .
$$

where

$$
\tilde{\mathbf{f}}_{i}=\tilde{\mathbf{A}}_{i j} \mathbf{V}_{i}^{*} \mathbf{D}_{i i}^{-1} \mathbf{f}_{j} .
$$

Before compression, we have a $p n \times p n$ linear system

$$
\sum_{j=1}^{p} \mathbf{A}_{i j} \mathbf{q}_{j}=\mathbf{f}_{i}, \quad i=1,2, \ldots, p
$$

After compression, we have a pk $\times p k$ linear system

$$
\mathbf{D}_{i i} \tilde{\mathbf{q}}_{i}+\sum_{i \neq j} \tilde{\mathbf{A}}_{i j} \tilde{\mathbf{q}}_{j}=\tilde{\mathbf{f}}_{i}, \quad i=1,2, \ldots, p
$$

Recall that k is the ε-rank of $\mathbf{A}_{i, j}$ for $i \neq j$.
The point is that $k<n$.

The reduced matrix

The compression algorithm needs to execute the following steps:

- Compute $\mathbf{U}_{i}, \mathbf{V}_{i}, \tilde{\mathbf{A}}_{i j}$ so that $\mathbf{A}_{i j}=\mathbf{U}_{i} \tilde{\mathbf{A}}_{i j} \mathbf{V}_{j}^{*}$.
- Compute the new diagonal matrices $\hat{\mathbf{D}}_{i i}=\left(\mathbf{V}_{i}^{*} \mathbf{A}_{i j}^{-1} \mathbf{U}_{i}\right)^{-1}$.
- Compute the new loads $\tilde{\mathbf{q}}_{i}=\hat{\mathbf{D}}_{i j} \mathbf{V}_{i}^{*} \mathbf{A}_{i i}^{-1} \mathbf{q}_{i}$.

For the algorithm to be efficient, it has to be able to carry out these steps locally.
To achieve this, we use interpolative representations, then $\tilde{\mathbf{A}}_{i, j}=\mathbf{A}\left(\tilde{I}_{i}, \tilde{I}_{j}\right)$.

We have built a scheme for reducing a system of size $p n \times p n$ to one of size $p k \times p k$.

The computational gain is $(k / n)^{3}$. Good, but not earth-shattering.
Question: How do we get to $O(N)$?
Answer: It turns out that the reduced matrix is itself compressible. Recurse!

A globally $O(N)$ algorithm is obtained by hierarchically repeating the process:

\downarrow Compress
Cluster

\downarrow Compress

\downarrow Compress
Cluster

Formally, one can view this as a telescoping factorization of \mathbf{A} :

$$
\mathbf{A}=\mathbf{U}^{(3)}\left(\mathbf{U}^{(2)}\left(\mathbf{U}^{(1)} \mathbf{B}^{(0)}\left(\mathbf{V}^{(1)}\right)^{*}+\mathbf{B}^{(1)}\right)\left(\mathbf{V}^{(2)}\right)^{*}+\mathbf{B}^{(2)}\right)\left(\mathbf{V}^{(3)}\right)^{*}+\mathbf{D}^{(3)}
$$

Expressed pictorially, the factorization takes the form

The inverse of A then takes the form

$$
\mathbf{A}^{-1}=\mathbf{E}^{(3)}\left(\mathbf{E}^{(2)}\left(\mathbf{E}^{(1)} \hat{\mathbf{D}}^{(0)}\left(\mathbf{F}^{(1)}\right)^{*}+\hat{\mathbf{D}}^{(1)}\right)\left(\mathbf{F}^{(2)}\right)^{*}+\hat{\mathbf{D}}^{(2)}\right)\left(\mathbf{V}^{(3)}\right)^{*}+\hat{\mathbf{D}}^{(3)}
$$

All matrices are block diagonal except $\hat{\mathbf{D}}^{(0)}$, which is small.

Formal definition of an HBS matrix

Let us first recall the concept of a binary tree on the index vector:
Let A be an $N \times N$ matrix.
Suppose \mathcal{T} is a binary tree on the index vector $I=[1,2,3, \ldots, N]$.
For a node τ in the tree, let I_{τ} denote the corresponding index vector.

For nodes σ and τ on the same level, set $\mathbf{A}_{\sigma, \tau}=\mathbf{A}\left(I_{\sigma}, I_{\tau}\right)$.

Formal definition of an HBS matrix

Suppose \mathcal{T} is a binary tree.
For a node τ in the tree, let I_{τ} denote the corresponding index vector.
For leaves σ and τ, set $\mathbf{A}_{\sigma, \tau}=\mathbf{A}\left(I_{\sigma}, I_{\tau}\right)$ and suppose that all off-diagonal blocks satisfy

$$
\begin{array}{llll}
\mathbf{A}_{\sigma, \tau}= & \mathbf{U}_{\sigma} \quad \tilde{\mathbf{A}}_{\sigma, \tau} \quad \mathbf{V}_{\tau}^{*} & \sigma \neq \tau \\
n \times n & n \times k k \times k k \times n &
\end{array}
$$

For non-leaves σ and τ, let $\left\{\sigma_{1}, \sigma_{2}\right\}$ denote the children of σ, and let $\left\{\tau_{1}, \tau_{2}\right\}$ denote the children of τ. Set

$$
\mathbf{A}_{\sigma, \tau}=\left[\begin{array}{ll}
\tilde{\mathbf{A}}_{\sigma_{1}, \tau_{1}} & \tilde{\mathbf{A}}_{\sigma_{1}, \tau_{2}} \\
\tilde{\mathbf{A}}_{\sigma_{2}, \tau_{1}} & \tilde{\mathbf{A}}_{\sigma_{2}, \tau_{2}}
\end{array}\right]
$$

Then suppose that the off-diagonal blocks satisfy

$$
\begin{gathered}
\mathbf{A}_{\sigma, \tau}= \\
2 k \times 2 k \\
2 k \times k \\
2 k \times k \times 2 k
\end{gathered} \tilde{\mathbf{A}}_{\sigma, \tau} \quad \mathbf{V}_{\tau}^{*} \quad \sigma \neq \tau
$$

An HBS matrix A associated with a tree \mathcal{T} is specified by the following factors:

	Name:	Size:	Function:
For each leaf	\mathbf{D}_{τ}	$n \times n$	The diagonal block $\mathbf{A}\left(I_{\tau}, l_{\tau}\right)$.
node τ :	\mathbf{U}_{τ}	$n \times k$	Basis for the columns in the blocks in row τ.
	\mathbf{V}_{τ}	$n \times k$	Basis for the rows in the blocks in column τ.
For each parent	\mathbf{B}_{τ}	$2 k \times 2 k$	Interactions between the children of τ.
node τ :	\mathbf{U}_{τ}	$2 k \times k$	Basis for the columns in the (reduced) blocks in row τ.
	\mathbf{V}_{τ}	$2 k \times k$	Basis for the rows in the (reduced) blocks in column τ.

loop over all levels, finer to coarser, $\ell=L, L-1, \ldots, 1$
loop over all boxes τ on level ℓ,
if τ is a leaf node

$$
\mathbf{X}=\mathbf{D}_{\tau}
$$

else
Let σ_{1} and σ_{2} denote the children of τ.
$\mathbf{X}=\left[\begin{array}{cc}\mathbf{D}_{\sigma_{1}} & \mathbf{B}_{\sigma_{1}, \sigma_{2}} \\ \mathbf{B}_{\sigma_{2}, \sigma_{1}} & \mathbf{D}_{\sigma_{2}}\end{array}\right]$
end if
$\mathbf{D}_{\tau}=\left(\mathbf{V}_{\tau}^{*} \mathbf{X}^{-1} \mathbf{U}_{\tau}\right)^{-1}$.
$\mathbf{E}_{\tau}=\mathbf{X}^{-1} \mathbf{U}_{\tau} \mathbf{D}_{\tau}$.
$\mathbf{F}_{\tau}^{*}=\mathbf{D}_{\tau} \mathbf{V}_{\tau}^{*} \mathbf{X}^{-1}$.
$\mathbf{G}_{\tau}=\mathbf{X}^{-1}-\mathbf{X}^{-1} \mathbf{U}_{\tau} \mathbf{D}_{\tau} \mathbf{V}_{\tau}^{*} \mathbf{X}^{-1}$.

end loop

end loop

$$
\mathbf{G}_{1}=\left[\begin{array}{cc}
\mathbf{D}_{2} & \mathbf{B}_{2,3} \\
\mathbf{B}_{3,2} & \mathbf{D}_{3}
\end{array}\right]^{-1}
$$

```
function EFG = OMNI_invert_HBS_nsym(NODES)
nboxes = size(NODES,2);
EFG = cell(3,nboxes);
ATD_VEC = cell(1,nboxes);
% Loop over all nodes, from finest to coarser.
for ibox = nboxes:(-1):2
    % Assemble the diagonal matrix.
    if (NODES{5,ibox}==0) % ibox is a leaf.
        AD = NODES{40,ibox};
    elseif (NODES{5,ibox}==2) % ibox has precisely two children
        ison1 = NODES{4,ibox}(1);
        ison2 = NODES{4,ibox}(2);
        AD = [ATD_VEC{ison1},NODES{46,ison1};NODES{46,ison2},ATD_VEC{ison2}];
    end
    % Extract the matrices U and V.
    U = NODES{38,ibox};
    V = NODES{39,ibox};
    % Construct the various projection maps.
    ADinv = inv(AD);
    ATD = inv(V'*ADinv*U);
    ATD_VEC{ibox} = ATD;
    EFG{1,ibox} = ADinv*U*ATD;
    EFG{2,ibox} = ATD*(V')*ADinv;
    EFG{3,ibox} = ADinv - EFG{1,ibox}*(V'*ADinv);
end
% Assemble the "top matrix" and invert it:
AT = [ATD_VEC{2}, NODES{46,2}; NODES{46,3},ATD_VEC{3}];
EFG{3,1} = inv(AT);
return
```

Now let us return to the question of how to compute a block-separable factorization of a matrix A, where the low-rank factorization is based on an interpolative decomposition.

Example: Consider an $N \times N$ matrix \mathbf{A}, and a partitioning of the index vector

$$
I=\{1,2,3, \ldots, N\}=I_{4} \cup I_{5} \cup I_{6} \cup I_{7}
$$

We then seek to determine matrices $\left\{\mathbf{U}_{\tau}, \mathbf{V}_{\tau}\right\}_{\tau=4}^{7}$ and index vectors $\tilde{I}_{\kappa} \subset I_{\kappa}$ such that

$$
\mathbf{A}\left(I_{\tau}, I_{\sigma}\right)=\mathbf{U}_{\tau} \tilde{\mathbf{A}}_{\tau, \sigma} \mathbf{V}_{\sigma}^{*}, \quad \sigma \neq \tau
$$

where $\tilde{\mathbf{A}}_{\tau, \sigma}=\mathbf{A}\left(\tilde{I}_{\tau}, \tilde{l}_{\sigma}\right)$ is a submatrix of $\mathbf{A}_{\tau, \sigma}$.
In other words, we seek a factorization

What is the role of the basis matrices \mathbf{U}_{τ} and \mathbf{V}_{τ} ?
Recall our toy example: $\mathbf{A}=\left[\begin{array}{ccccc}\mathbf{D}_{4} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{45} \mathbf{V}_{5}^{*} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{46} \mathbf{V}_{6}^{*} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{47} \mathbf{V}_{7}^{*} \\ \mathbf{U}_{5} \tilde{A}_{54} \mathbf{V}_{4}^{*} & \mathbf{D}_{5} & \mathbf{U}_{5} \tilde{A}_{56} \mathbf{V}_{6}^{*} & \mathbf{U}_{5} \tilde{\mathbf{A}}_{57} \mathbf{V}_{7}^{*} \\ \mathbf{U}_{6} \tilde{\mathbf{A}}_{64} \mathbf{V}_{4}^{*} & \mathbf{U}_{6} \tilde{\mathbf{A}}_{65} \mathbf{V}_{5}^{*} & \mathbf{D}_{6} & \mathbf{U}_{6} \tilde{\mathbf{A}}_{67} \mathbf{V}_{7}^{*} \\ \mathbf{U}_{7} \tilde{\mathbf{A}}_{74} \mathbf{V}_{4}^{*} & \mathbf{U}_{7} \tilde{\mathbf{A}}_{75} \mathbf{V}_{5}^{*} & \mathbf{U}_{7} \tilde{\mathbf{A}}_{76} & \mathbf{V}_{6}^{*} & \mathbf{D}_{7}\end{array}\right]$.

We see that the columns of U_{4} must span the column space of the matrix $\mathbf{A}\left(I_{4}, I_{4}^{c}\right)$ where I_{4} is the index vector for the first block and $I_{4}^{c}=\Lambda I_{4}$.

The matrix \mathbf{A}

What is the role of the basis matrices \mathbf{U}_{τ} and \mathbf{V}_{τ} ?
Recall our toy example: $\mathbf{A}=\left[\begin{array}{ccccc}\mathbf{D}_{4} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{45} \mathbf{V}_{5}^{*} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{46} \mathbf{V}_{6}^{*} & \mathbf{U}_{4} \tilde{\mathbf{A}}_{47} \mathbf{V}_{7}^{*} \\ \mathbf{U}_{5} \tilde{\mathbf{A}}_{54} \mathbf{V}_{4}^{*} & \mathbf{D}_{5} & \mathbf{U}_{5} \tilde{\mathbf{A}}_{56} \mathbf{V}_{6}^{*} & \mathbf{U}_{5} \tilde{\mathbf{A}}_{57} \mathbf{V}_{7}^{*} \\ \mathbf{U}_{6} \tilde{\mathbf{A}}_{64} \mathbf{V}_{4}^{*} & \mathbf{U}_{6} \tilde{\mathbf{A}}_{65} \mathbf{V}_{5}^{*} & \mathbf{D}_{6} & \mathbf{U}_{6} \tilde{\mathbf{A}}_{67} \mathbf{V}_{7}^{*} \\ \mathbf{U}_{7} \tilde{\mathbf{A}}_{74} \mathbf{V}_{4}^{*} & \mathbf{U}_{7} \tilde{\mathbf{A}}_{75} \mathbf{V}_{5}^{*} & \mathbf{U}_{7} \tilde{\mathbf{A}}_{76} & \mathbf{V}_{6}^{*} & \mathbf{D}_{7}\end{array}\right]$.

We see that the columns of U_{5} must span the column space of the matrix $\mathbf{A}\left(I_{5}, I_{5}^{c}\right)$ where I_{5} is the index vector for the first block and $I_{5}^{c}=\Lambda I_{5}$.

The matrix A

As mentioned earlier, it is handy to use the interpolative decomposition (ID), in which \mathbf{U}_{τ} and \mathbf{V}_{τ} contain identity matrices. To review how this works, consider a situation with n sources in a domain Ω_{1} inducing m potentials in a different domain Ω_{2}.

Source locations $\left\{\boldsymbol{y}_{j}\right\}_{j=1}^{n}$

Let \mathbf{A}_{21} denote the $m \times n$ matrix with entries $\mathbf{A}_{21}(i, j)=\log \left|\boldsymbol{x}_{i}-\boldsymbol{y}_{j}\right|$. Then

$$
\begin{gathered}
\mathbf{f}=\begin{array}{cc}
\mathbf{A}_{21} & \mathbf{q} \\
m \times 1 & m \times n \\
n \times 1
\end{array}
\end{gathered}
$$

As mentioned earlier, it is handy to use the interpolative decomposition (ID), in which \mathbf{U}_{τ} and \mathbf{V}_{τ} contain identity matrices. To review how this works, consider a situation with n sources in a domain Ω_{1} inducing m potentials in a different domain Ω_{2}.

$$
\text { Source locations }\left\{\boldsymbol{y}_{j}\right\}_{j=1}^{n} \quad \text { Target locations }\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{m}
$$

Let \mathbf{A}_{21} denote the $m \times n$ matrix with entries $\mathbf{A}_{21}(i, j)=\log \left|\boldsymbol{x}_{i}-\boldsymbol{y}_{j}\right|$. Then

$$
\begin{gathered}
\underset{m \times 1}{\mathbf{f}}=\mathbf{A}_{21} \quad \underset{\mathbf{q}}{m \times n}=\mathbf{U}_{2} \quad \tilde{\mathbf{A}}_{21} \quad \mathbf{V}_{1}^{*} \quad \mathbf{q} \\
m \times k
\end{gathered}
$$

where $\tilde{\mathbf{A}}_{21}=\mathbf{A}_{21}\left(\tilde{l}_{2}, \tilde{l}_{1}\right)$ is a $k \times k$ submatrix of \mathbf{A}.
The index vector $\tilde{I}_{1} \subseteq\{1,2, \ldots, n\}$ marks the chosen skeleton source locations.
The index vector $\tilde{I}_{2} \subseteq\{1,2, \ldots, m\}$ marks the chosen skeleton target locations.

Review of ID: Consider a rank- k factorization of an $m \times n$ matrix: $\mathbf{A}_{21}=\mathbf{U}_{2} \tilde{\mathbf{A}}_{21} \mathbf{V}_{1}^{*}$

Sources in Ω_{1}

Targets in Ω_{2}

To precision 10^{-10}, the rank is 19 .

Advantages of the ID:

- The rank k is typically close to optimal.
- Applying \mathbf{V}_{1}^{*} and \mathbf{U}_{2} is cheap - they both contain $k \times k$ identity matrices.
- The matrices \mathbf{V}_{1}^{*} and \mathbf{U}_{2} are well-conditioned.
- Finding the k points is cheap - simply use Gaussian elimination.
- The map $\tilde{\mathbf{A}}_{12}$ is simply a restriction of the original map \mathbf{A}_{12}.
(We loosely say that "the physics of the problem is preserved".)
- Interaction between adjacent boxes can be compressed (no buffering required).

When the ID is used to compress the off-diagonal blocks, then all "black" blocks in the graphic below are unchanged compared to the original matrix. All you do is extract sub-blocks of the original off-diagonal blocks!

\downarrow Compress

Cluster

\downarrow Compress

\downarrow Compress

Cluster

