The outgoing expansion

Let τ be a box (green).

Let c_{τ} be the center of τ (black).

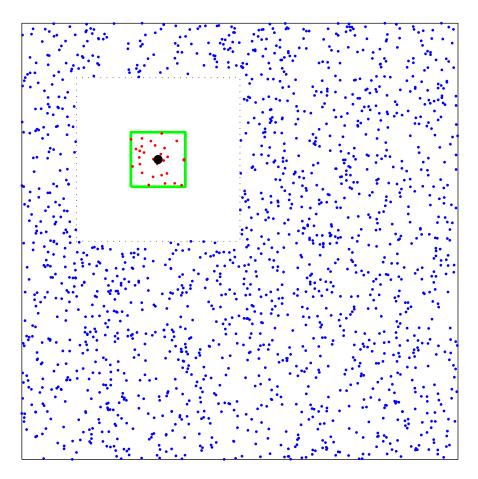
Let y_j be source locations in τ (red).

Let q_j be the strength of source j.

Let x_i be targets well separated from τ (blue).

Let u denote the potential

$$u(\boldsymbol{x}_i) = \sum_j q_j \log(\boldsymbol{x}_i - \boldsymbol{y}_j).$$



The *outgoing expansion* of τ is a vector $\hat{\boldsymbol{q}} = [\hat{q}_p]_{p=0}^P$ of complex numbers such that

(1)
$$u(\boldsymbol{x}) \approx \hat{q}_0 \log |\boldsymbol{x} - \boldsymbol{c}_\tau| + \sum_{p=1}^P \hat{q}_p \frac{1}{(\boldsymbol{x} - \boldsymbol{c}_\tau)^p}, \qquad \boldsymbol{x} \in \Omega_\tau^{\text{far}}.$$

The outgoing expansion is a compact representation of the sources inside τ (it encodes both the source locations and the magnitudes).

The incoming expansion

Let τ be a box (green).

Let c_{τ} be the center of τ (black).

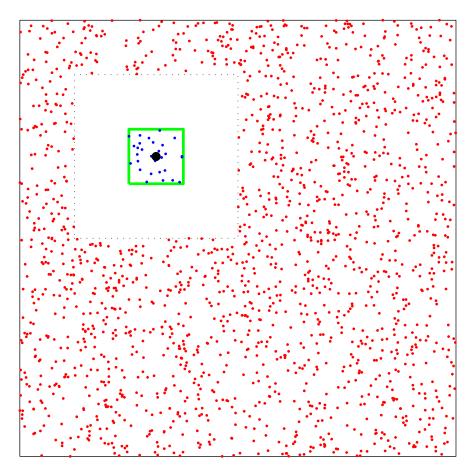
Let y_j be sources well-separated from τ (red).

Let q_j be strength of source j.

Let x_i be targets inside τ (blue).

Let u denote the potential

$$u(\boldsymbol{x}_i) = \sum_j q_j \log(\boldsymbol{x}_i - \boldsymbol{y}_j).$$



The *incoming expansion* of τ is a vector $\hat{\boldsymbol{u}} = [\hat{u}_p]_{p=0}^P$ of complex numbers such that

(2)
$$u(\boldsymbol{x}) \approx \sum_{p=0}^{P} \hat{u}_p(\boldsymbol{x} - \boldsymbol{c}_{\tau})^p, \qquad \boldsymbol{x} \in \Omega_{\tau}.$$

The incoming expansion is a compact representation of the sources well-separated from τ (it encodes both the source locations and the magnitudes).

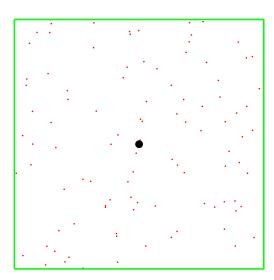
The outgoing-from-sources translation operator $\mathsf{T}_{\tau}^{(\mathrm{ofs})}$

Let τ be a box (green).

Let c_{τ} be the center of τ (black).

Let $\{y_j\}_j^{N_\tau}$ be source locations in τ (red).

Let q_j be strength of source j.



The operator $\mathsf{T}_{\tau}^{(\mathrm{ofs})}$ constructs the outgoing expansion directly from the vector of charges.

$$\hat{q}_{\tau} = \mathsf{T}_{\tau}^{(\mathrm{ofs})} \quad q$$

$$(P+1) \times 1 \quad (P+1) \times N_{\tau} \quad N_{\tau} \times 1$$

$$\mathsf{T}_{\tau,0,j}^{(\mathrm{ofs})} = 1 \qquad \qquad 1 \le j \le N_{\tau}$$

$$\mathsf{T}_{\tau,p,j}^{(\mathrm{ofs})} = -\frac{1}{p} (\boldsymbol{y}_{j} - \boldsymbol{c}_{\tau})^{p} \qquad \qquad 1 \le p \le P \qquad 1 \le j \le N_{\tau}.$$

The outgoing-from-outgoing translation operator $\mathsf{T}^{(\mathrm{ofo})}_{ au,\sigma}$

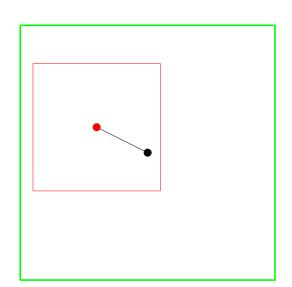
Let τ be a box (green).

Let c_{τ} be the center of c_{τ} (black).

Let σ denote a box contained in τ .

Let c_{σ} denote the center of σ (red).

Let \hat{q}_{σ} be outgoing expansion of σ .



 $\mathsf{T}_{\tau,\sigma}^{(\mathrm{ofo})}$ constructs the outgoing expansion of τ from the outgoing expansion of σ

$$\hat{q}_{\tau} = \mathsf{T}_{\tau,\sigma}^{(\mathrm{ofo})} \qquad \hat{q}_{\sigma}$$
 $(P+1) \times 1 \qquad (P+1) \times (P+1) \quad (P+1) \times 1$

With $d = c_{\sigma} - c_{\tau}$, $\mathsf{T}_{\tau,\sigma}^{(\mathrm{ofo})}$ is a lower tridiagonal matrix with entries

$$\begin{aligned} \mathsf{T}_{\tau,\sigma,0,0}^{(\mathrm{ofo})} &= 1 \\ \mathsf{T}_{\tau,\sigma,p,0}^{(\mathrm{ofo})} &= -\frac{1}{p} \boldsymbol{d} \\ \mathsf{T}_{\tau,\sigma,p,q}^{(\mathrm{ofo})} &= \begin{pmatrix} p \\ q \end{pmatrix} \boldsymbol{d}^{p-q} \\ \end{aligned} \qquad \qquad 1 \leq p \leq P.$$

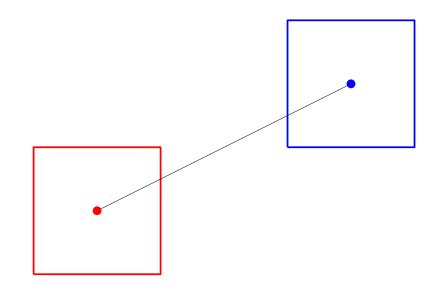
The incoming-from-outgoing translation operator $\mathsf{T}_{ au,\sigma}^{(\mathrm{ifo})}$

Let σ be a source box (red) with center c_{σ} .

Let τ be a target box (blue) with center c_{τ} .

Let \hat{q}_{σ} be the outgoing expansion of σ .

Let $\hat{\boldsymbol{u}}_{\tau}$ represent the potential in τ caused by sources in σ .



 $\mathsf{T}_{\tau,\sigma}^{(\mathrm{ifo})}$ constructs the incoming expansion of τ from the outgoing expansions of σ :

$$\hat{\boldsymbol{u}}_{\tau} = \mathsf{T}_{\tau,\sigma}^{(\mathrm{ifo})} \qquad \hat{\boldsymbol{q}}_{\sigma}$$

$$(P+1) \times 1 \qquad (P+1) \times (P+1) \quad (P+1) \times 1$$

With $d = c_{\sigma} - c_{\tau}$, $\mathsf{T}_{\tau,\sigma}^{(\mathrm{ifo})}$ is a matrix with entries

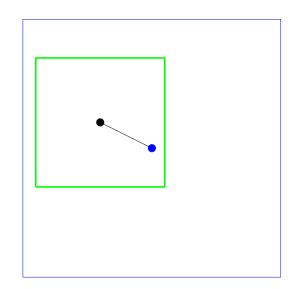
$$\mathsf{T}_{\tau,\sigma,p,q}^{(\mathrm{ofo})} = ?$$

The incoming-from-incoming translation operator $\mathsf{T}^{(\mathrm{ifi})}_{ au,\sigma}$

Let τ be a box (green) with center \boldsymbol{c}_{τ} (black).

Let σ be a box (blue) containing τ with center c_{σ} .

Let $\hat{\boldsymbol{u}}_{\sigma}$ be an incoming expansion for σ .



 $\mathsf{T}_{\tau,\sigma}^{(\mathrm{ifi})}$ constructs the incoming expansion of τ from the incoming expansion of σ

$$\hat{\boldsymbol{u}}_{\tau} = \mathsf{T}_{\tau,\sigma}^{(\mathrm{ifi})} \hat{\boldsymbol{u}}_{\sigma}$$
 $(P+1) \times 1 \qquad (P+1) \times (P+1) \quad (P+1) \times 1$

With $d = c_{\sigma} - c_{\tau}$, $\mathsf{T}_{\tau,\sigma}^{(\mathrm{ifi})}$ is a matrix with entries

$$\mathsf{T}_{ au,\sigma,p,q}^{(\mathrm{ifi})} = ?$$

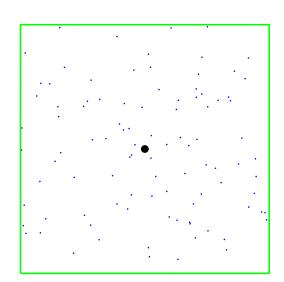
The targets-from-incoming translation operator $\mathsf{T}_{ au}^{(tfi)}$

Let τ be a box (green).

Let c_{τ} be the center of τ (black).

Let $\{x_i\}_i^{N_{\tau}}$ be target locations in τ (blue).

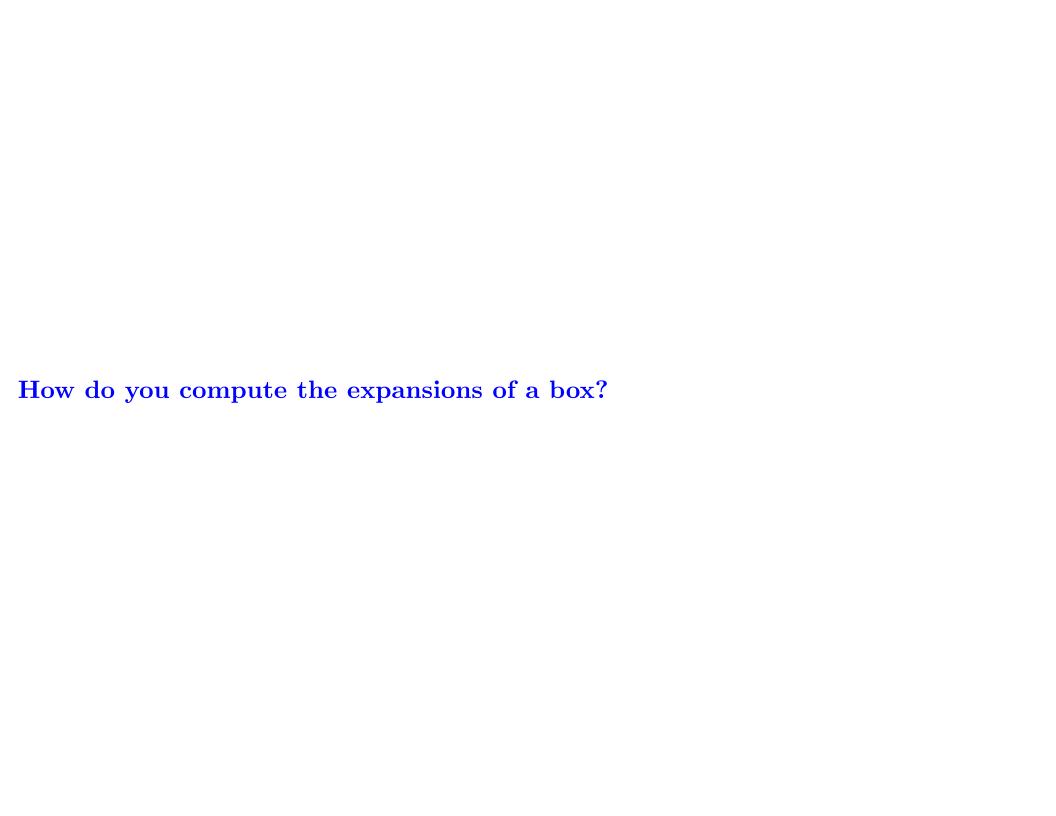
Let $\hat{\boldsymbol{u}}_{\tau}$ be the incoming expansion of τ .



 $\mathsf{T}_{\tau}^{(\mathrm{tfi})}$ constructs the potentials in τ from the incoming expansion

$$egin{array}{lcl} oldsymbol{u}_{ au} &=& \mathsf{T}_{ au}^{(ext{tfi})} & \hat{oldsymbol{u}}_{ au} \ N_{ au} imes 1 & N_{ au} imes (P+1) & (P+1) imes 1 \end{array}$$

$$\mathsf{T}_{\tau,i,p}^{(\mathrm{tfi})} = (\boldsymbol{x}_i - \boldsymbol{c}_{\tau})^p \qquad 1 \le i \le N_{\tau} \quad 0 \le p \le P.$$



Computing the outgoing expansion of a leaf

Let τ be a box (green).

Let c_{τ} be the center of τ (black).

Let $\{y_j\}_{j}^{N_{\tau}}$ be source locations in τ (red).

Let q_j be strength of source j.

There is an analytic formula:

$$\hat{q}_0 = \sum_{j=1}^{N_{\tau}} q_j$$
 $\hat{q}_p = -\frac{1}{p} \sum_{j=1}^{N_{\tau}} q_j (\mathbf{y}_j - \mathbf{c}_{\tau})^p, \qquad p = 1, 2, ..., P.$

We write the formula compactly as

$$\hat{m{q}}_{ au} = \mathsf{T}_{ au}^{(ext{ofs})} \, m{q}_{ au}.$$

Computing the outgoing expansion of a parent

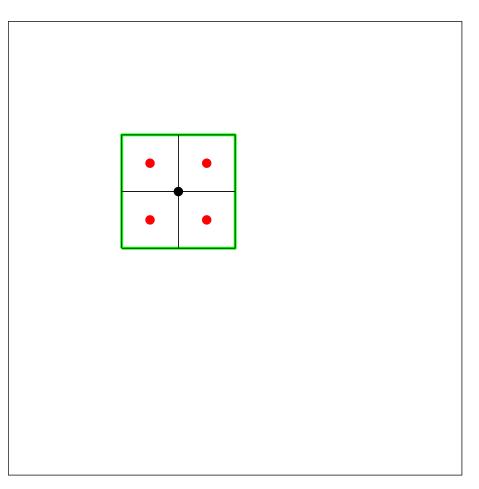
Let τ be a box (green).

Let c_{τ} be the center of τ (black).

Let $\mathcal{L}_{\tau}^{\text{(child)}}$ denote the children of τ .

Let c_{σ} be the center of child σ .

Let \hat{q}_{σ} be the outgoing expansion of child σ .



The outgoing expansion of τ can be computed from the outgoing expansions of its children:

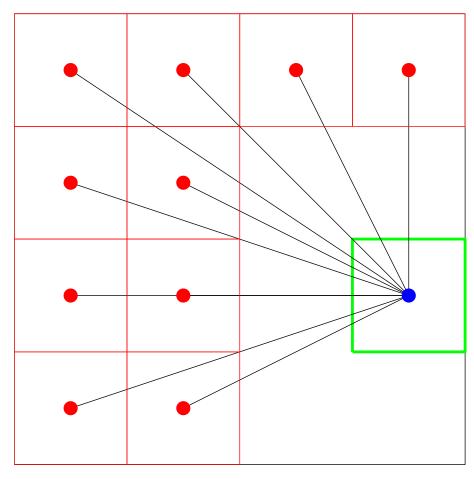
$$\hat{m{q}}_{ au} = \sum_{\sigma \in \mathcal{L}_{ au}^{ ext{(child)}}} \mathsf{T}_{ au,\sigma}^{ ext{(ofo)}} \hat{m{q}}_{\sigma}.$$

Computing the incoming expansions on level 2

Let τ be a box on level 2 (green).

Let c_{τ} be the center of τ (black).

The well-separated boxes on level 2 are red.



The incoming expansion of τ is computed from the outgoing expansions of boxes in its interaction list

$$\hat{m{u}}_{ au} = \sum_{\sigma \in \mathcal{L}_{ au}^{ ext{(int)}}} \mathsf{T}_{ au,\sigma}^{ ext{(ifo)}} \, \hat{m{q}}_{\sigma}.$$

Computing the incoming expansions on level ℓ when $\ell > 2$

Let τ be a box on level $\ell = 3$ (green).

Let ν be the parent of τ (blue).

Let $u_{\rm in}^{\tau}$ denote the potential caused by charges that are well-separated from τ — these are charges in the boxes marked with red dots and crosses. We have

$$u_{\rm in}^{\tau} = u_{\rm in}^{\nu} + v,$$

where u_{in}^{ν} is the incoming field for τ 's parent (caused by the boxes with red crosses), and v is the field caused by boxes in the interaction list of τ (boxes with a red dot).

×	×	×	×
×	×		
×	×		
×	×		

The field $u_{\rm in}^{\nu}$ was computed on the previous level and is represented by $\hat{\boldsymbol{u}}_{\nu}$.

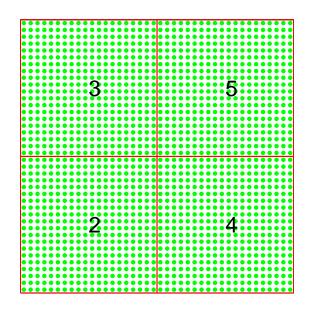
The field v is computed by transferring the outgoing expansions \hat{q}_{σ} for $\sigma \in \mathcal{L}_{\tau}^{(\text{int})}$.

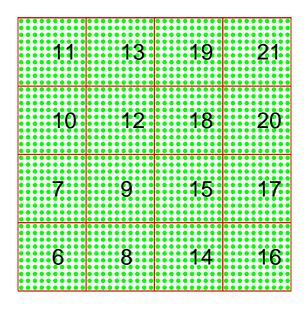
$$\hat{\boldsymbol{u}}_{\tau} = \mathsf{T}_{\tau,\nu}^{(\mathrm{ifi})} \hat{\boldsymbol{u}}_{\nu} + \sum_{\sigma \in \mathcal{L}_{\tau}^{(\mathrm{int})}} \mathsf{T}_{\tau,\sigma}^{(\mathrm{ifo})} \hat{\boldsymbol{q}}_{\sigma} \\
\sim u_{\mathrm{in}}^{\tau} \sim u_{\mathrm{in}}^{\nu} \sim v$$

The classical Fast Multipole Method in \mathbb{R}^2

- 1. Construct the tree and all "interaction lists."
- 2. For each leaf node, compute its outgoing expansion directly from the charges in the box via the *outgoing-from-sources operator*.
- 3. For each parent node, compute its outgoing expansion by merging the expansions of its children via the *outgoing-from-outgoing operator*.
- 4. For each node, compute its incoming expansion by transferring the incoming expansion of its parent (via the *incoming-from-incoming operator*), and then add the contributions from all charges in its interaction list (via the *incoming-from-outgoing operator*).
- 5. For each leaf node, evaluate the incoming expansion at the targets (via the targets-from-incoming operator), and compute near-field interactions directly.

Construct the tree and all interaction lists.





43 45 51 53 75	77 83 85
42 44 50 52 74	76 82 84
39 41 47 49 71	73 79 81
38 40 46 48 70	72 78 80
aranararan	64.67.60
26 28 34 36 58	60.66.68
23 25 31 33 55	57 63 6 5
22 24 30 32 54	56 62 64

Let L denote the number of levels in the tree.

Set all potentials to zero:

For all boxes τ

$$\hat{m{u}}_{ au} = m{0}$$

$$egin{aligned} \hat{m{u}}_{ au}=&m{0} \ \hat{m{q}}_{ au}=&m{0}. \end{aligned}$$

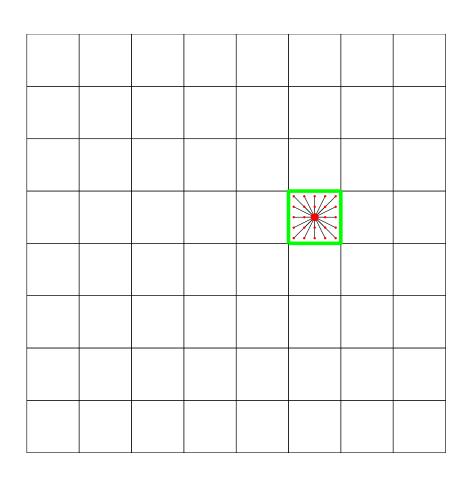
Set the potential to zero:

$$u = 0$$
.

Compute the outgoing expansion on each leaf via application of the *outgoing-from-source operators:*

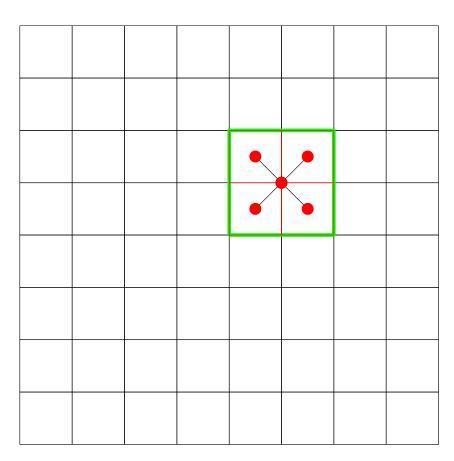
 ${\bf loop}$ over all leaf nodes τ

$$\hat{m{q}}_{ au} = \mathsf{T}_{ au}^{(ext{ofs})}\,m{q}(J_{ au})$$



Compute the outgoing expansion of each parent by merging the expansions of its children via application of the *outgoing-from-outgoing operators*:

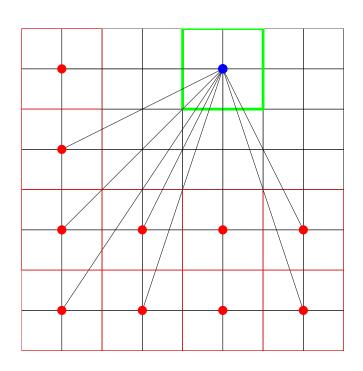
loop over levels $\ell = L - 1, L - 2, ..., 2$ loop over all nodes τ on level ℓ $\hat{q}_{\tau} = \sum_{\sigma \in \mathcal{L}_{\tau}^{(\mathrm{child})}} \mathsf{T}_{\tau,\sigma}^{(\mathrm{ofo})} \, \hat{q}_{\sigma}$ end loop end loop



Add contributions from boxes in the interaction list of each box via the *incoming-from-outgoing operators:*

 ${\bf loop}$ over all nodes τ

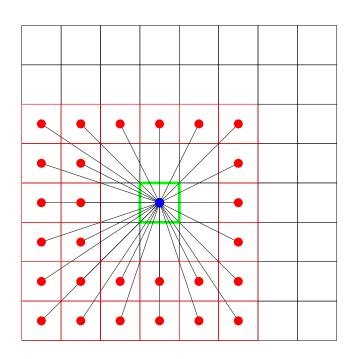
$$\hat{m{u}}_{ au} = \hat{m{u}}_{ au} + \sum_{\sigma \in \mathcal{L}_{ au}^{ ext{(int)}}} \mathsf{T}_{ au,\sigma}^{ ext{(ifo)}} \, \hat{m{q}}_{\sigma}.$$



Add contributions from boxes in the interaction list of each box via the *incoming-from-outgoing operators:*

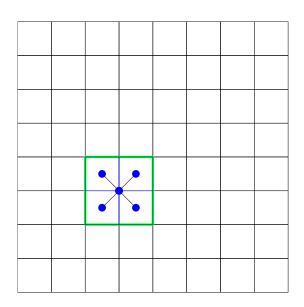
 ${\bf loop}$ over all nodes τ

$$\hat{m{u}}_{ au} = \hat{m{u}}_{ au} + \sum_{\sigma \in \mathcal{L}_{ au}^{ ext{(int)}}} \mathsf{T}_{ au,\sigma}^{ ext{(ifo)}} \, \hat{m{q}}_{\sigma}.$$



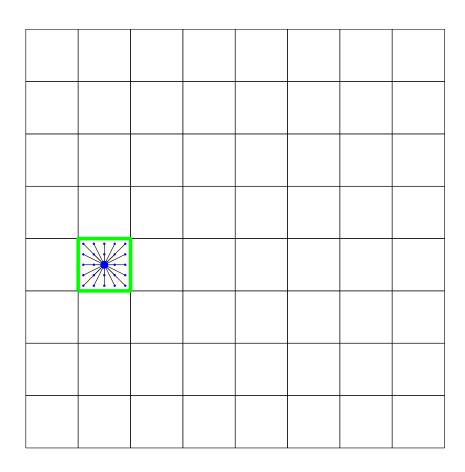
Add contributions from the parent of each box via via the *incoming-from-incoming operators*:

```
loop over levels \ell = 2, 3, 4, \ldots, L-1
loop over all nodes \tau on level \ell
loop over all children \sigma of \tau
\hat{u}_{\sigma} = \hat{u}_{\sigma} + \mathsf{T}_{\sigma,\tau}^{(\mathrm{ifi})} \hat{u}_{\tau}.
end loop
end loop
end loop
```



Compute the potential on every leaf by expanding its incoming potential via the *targets-from-incoming operators:*

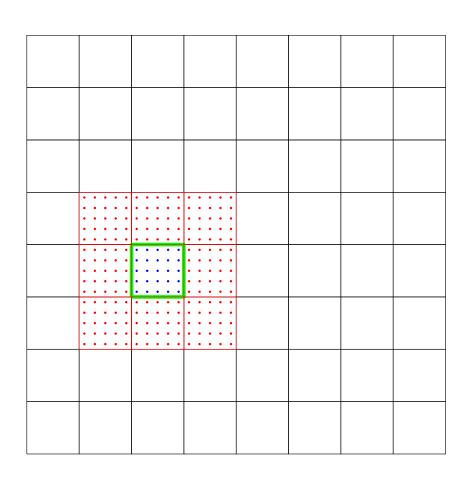
 $\begin{aligned} \textbf{loop} \text{ over all leaf nodes } \tau \\ \boldsymbol{u}(J_{\tau}) &= \boldsymbol{u}(J_{\tau}) + \mathsf{T}_{\tau}^{(\text{tfi})} \, \hat{\boldsymbol{u}}_{\tau} \\ \textbf{end loop} \end{aligned}$



Add to the leaf potentials the interactions from direct neighbors:

loop over all leaf nodes τ

$$\begin{aligned} \boldsymbol{u}(J_{\tau}) &= \boldsymbol{u}(J_{\tau}) + \mathsf{A}(J_{\tau}, J_{\tau}) \, \boldsymbol{q}(J_{\tau}) + \textstyle\sum_{\sigma \in \mathcal{L}_{\tau}^{(\mathrm{nei})}} \, \mathsf{A}(J_{\tau}, J_{\sigma}) \, \boldsymbol{q}(J_{\sigma}) \\ &\text{end loop} \end{aligned}$$



Set $\hat{\boldsymbol{u}}_{\tau} = \boldsymbol{0}$ and $\hat{\boldsymbol{q}}_{\tau} = \boldsymbol{0}$ for all τ .

loop over all leaf nodes τ

$$\hat{oldsymbol{q}}_{ au} = \mathsf{T}_{ au}^{(ext{ofs})} \, oldsymbol{q}(J_{ au})$$

end loop

loop over levels $\ell = L, L - 1, \ldots, 2$

loop over all nodes τ on level ℓ

$$\hat{m{q}}_{ au} = \sum_{\sigma \in \mathcal{L}_{ au}^{ ext{(child)}}} \mathsf{T}_{ au,\sigma}^{ ext{(ofo)}} \, \hat{m{q}}_{\sigma}$$

end loop

end loop

loop over all nodes τ

$$\hat{m{u}}_{ au} = \hat{m{u}}_{ au} + \sum_{\sigma \in \mathcal{L}_{ au}^{(ext{int})}} \mathsf{T}_{ au,\sigma}^{(ext{ifo})} \, \hat{m{q}}_{\sigma}.$$

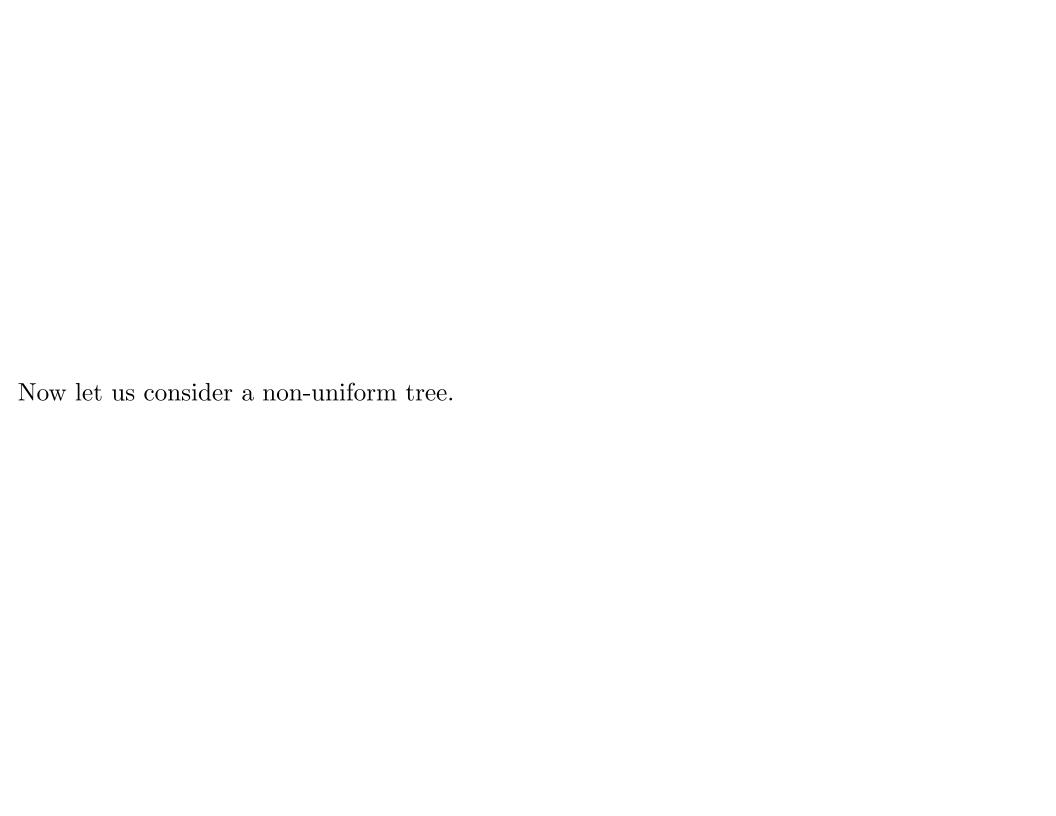
end loop

loop over levels $\ell=2, 3, 4, \ldots, L-1$ loop over all nodes τ on level ℓ loop over all children σ of τ $\hat{\boldsymbol{u}}_{\sigma}=\hat{\boldsymbol{u}}_{\sigma}+\mathsf{T}_{\sigma,\tau}^{(\mathrm{ifi})}\,\hat{\boldsymbol{u}}_{\tau}.$ end loop end loop end loop

 $egin{aligned} \mathbf{loop} & ext{ over all leaf nodes } au \ & oldsymbol{u}(J_{ au}) = \mathsf{T}_{ au}^{(ext{tfi})} \, \hat{oldsymbol{u}}_{ au} \ & ext{end loop} \end{aligned}$

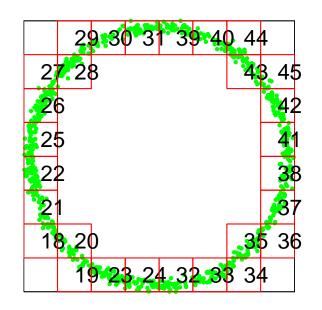
loop over all leaf nodes τ

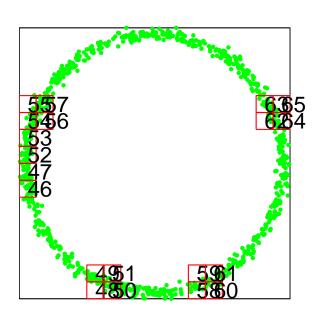
$$egin{aligned} oldsymbol{u}(J_{ au}) &= oldsymbol{u}(J_{ au}) + \mathsf{A}(J_{ au},J_{ au}) \, oldsymbol{q}(J_{ au}) \ &+ \sum_{\sigma \in \mathcal{L}_{ au}^{(\mathrm{nei})}} \, \mathsf{A}(J_{ au},J_{\sigma}) \, oldsymbol{q}(J_{\sigma}) \end{aligned}$$



Construct the tree and all interaction lists.

10	11	15	17
9			16
7			14
6	8	12,	13 ^{Phi}





Let L denote the number of levels in the tree.

Set all potentials to zero:

For all boxes τ

$$\hat{m{u}}_{ au} = m{0}$$

$$egin{aligned} \hat{m{u}}_{ au}=&m{0} \ \hat{m{q}}_{ au}=&m{0}. \end{aligned}$$

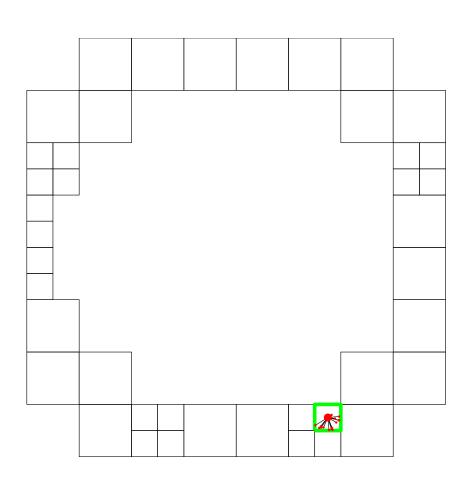
Set the potential to zero:

$$u = 0$$
.

Compute the outgoing expansion on each leaf via application of the *outgoing-from-source operators:*

 ${\bf loop}$ over all leaf nodes τ

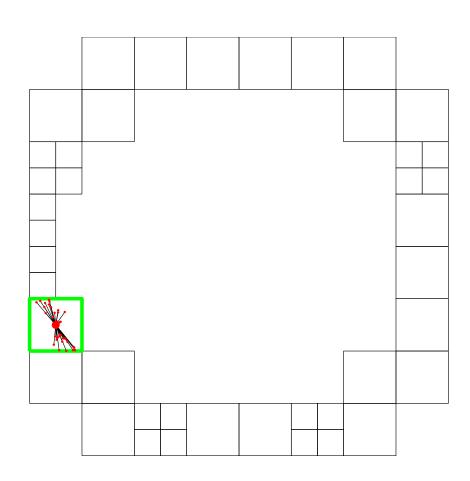
$$\hat{m{q}}_{ au} = \mathsf{T}_{ au}^{(ext{ofs})}\,m{q}(J_{ au})$$



Compute the outgoing expansion on each leaf via application of the *outgoing-from-source operators:*

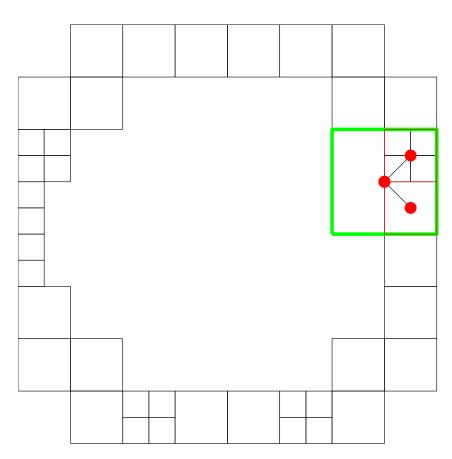
 ${\bf loop}$ over all leaf nodes τ

$$\hat{m{q}}_{ au} = \mathsf{T}_{ au}^{(ext{ofs})}\,m{q}(J_{ au})$$



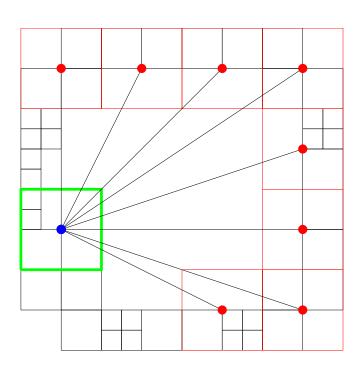
Compute the outgoing expansion of each parent by merging the expansions of its children via application of the *outgoing-from-outgoing operators*:

loop over levels $\ell = L - 1, L - 2, ..., 2$ loop over all nodes τ on level ℓ $\hat{q}_{\tau} = \sum_{\sigma \in \mathcal{L}_{\tau}^{(\mathrm{child})}} \mathsf{T}_{\tau,\sigma}^{(\mathrm{ofo})} \, \hat{q}_{\sigma}$ end loop end loop



Add contributions from the parent of each box via via the incoming-from-incoming operators:

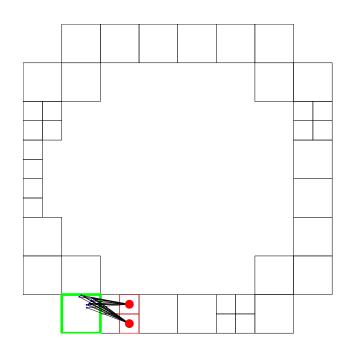
```
loop over levels \ell = 2, 3, 4, \ldots, L-1
loop over all nodes \tau on level \ell
loop over all children \sigma of \tau
\hat{u}_{\sigma} = \hat{u}_{\sigma} + \mathsf{T}_{\sigma,\tau}^{(\mathrm{ifi})} \hat{u}_{\tau}.
end loop
end loop
end loop
```



New: Some leaves τ (e.g. the green one below) must collect contributions to their potentials from outgoing expansions on boxes σ (red) on finer levels via the *targets-from-outgoing operator:*

loop over all nodes leaf τ

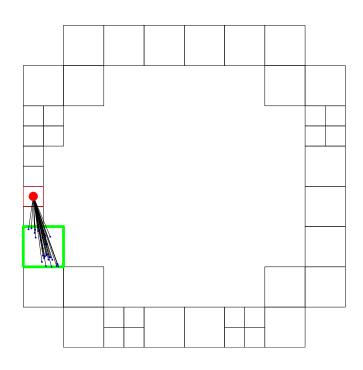
$$\boldsymbol{u}(J_{\tau}) = \boldsymbol{u}(J_{\tau}) + \sum_{\sigma \in \mathcal{L}_{\tau}^{(3)}} \mathsf{T}_{\tau,\sigma}^{(\mathrm{tfo})} \, \hat{\boldsymbol{q}}_{\sigma}.$$



New: Some leaves τ (e.g. the green one below) must collect contributions to their potentials from outgoing expansions on boxes σ (red) on finer levels via the *targets-from-outgoing operator*:

loop over all nodes leaf τ

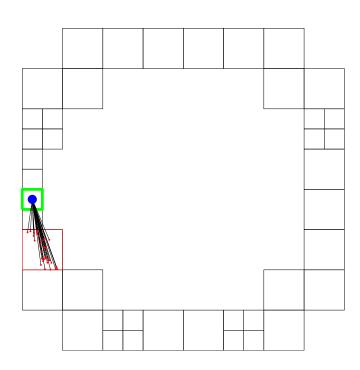
$$\boldsymbol{u}(J_{\tau}) = \boldsymbol{u}(J_{\tau}) + \sum_{\sigma \in \mathcal{L}_{\tau}^{(3)}} \mathsf{T}_{\tau,\sigma}^{(\mathrm{tfo})} \, \hat{\boldsymbol{q}}_{\sigma}.$$



New: Some boxes τ (e.g. the green one) must collect contributions to their incoming expansions directly from the sources in some leaves σ (red) via the *incoming-from-sources operator:*

loop over all nodes τ

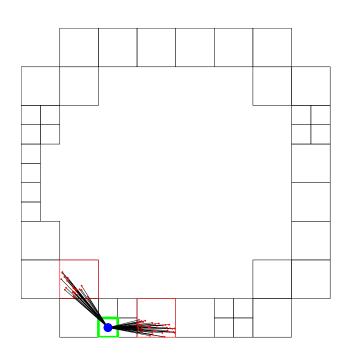
$$\hat{m{u}}_{ au} = \hat{m{u}}_{ au} + \sum_{\sigma \in \mathcal{L}_{ au}^{(4)}} \mathsf{T}_{ au,\sigma}^{(\mathrm{ifs})} \, m{q}(J_{\sigma}).$$



New: Some boxes τ (e.g. the green one) must collect contributions to their incoming expansions directly from the sources in some leaves σ (red) via the *incoming-from-sources operator:*

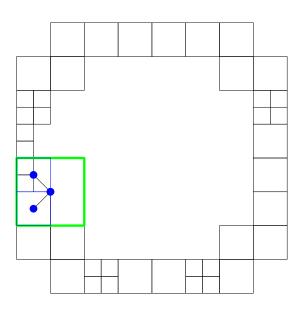
loop over all nodes τ

$$\hat{m{u}}_{ au} = \hat{m{u}}_{ au} + \sum_{\sigma \in \mathcal{L}_{ au}^{(4)}} \mathsf{T}_{ au,\sigma}^{(\mathrm{ifs})} \, m{q}(J_{\sigma}).$$



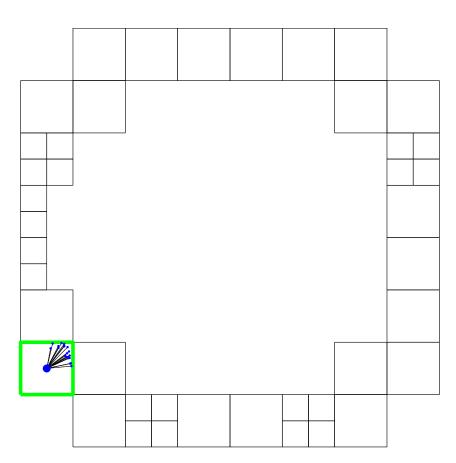
Add contributions from the parent of each box via via the incoming-from-incoming operators:

```
loop over levels \ell = 2, 3, 4, \ldots, L-1
loop over all nodes \tau on level \ell
loop over all children \sigma of \tau
\hat{u}_{\sigma} = \hat{u}_{\sigma} + \mathsf{T}_{\sigma,\tau}^{(\mathrm{ifi})} \hat{u}_{\tau}.
end loop
end loop
end loop
```



Compute the potential on every leaf by expanding its incoming potential via the *targets-from-incoming operators:*

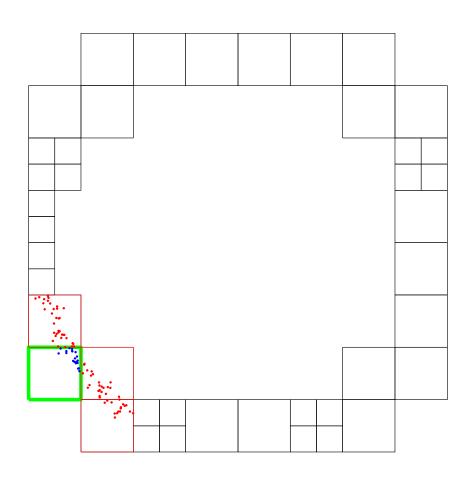
 $\begin{aligned} \textbf{loop} \text{ over all leaf nodes } \tau \\ \boldsymbol{u}(J_{\tau}) &= \boldsymbol{u}(J_{\tau}) + \mathsf{T}_{\tau}^{(\text{tfi})} \, \hat{\boldsymbol{u}}_{\tau} \\ \textbf{end loop} \end{aligned}$



Add to the leaf potentials the interactions from direct neighbors:

loop over all leaf nodes τ

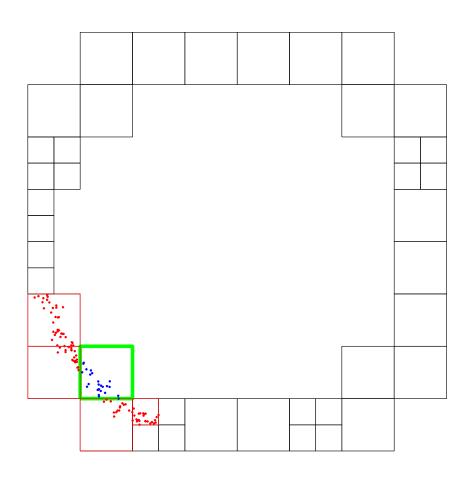
$$\begin{aligned} \boldsymbol{u}(J_{\tau}) &= \boldsymbol{u}(J_{\tau}) + \mathsf{A}(J_{\tau}, J_{\tau}) \, \boldsymbol{q}(J_{\tau}) + \textstyle\sum_{\sigma \in \mathcal{L}_{\tau}^{(\mathrm{nei})}} \, \mathsf{A}(J_{\tau}, J_{\sigma}) \, \boldsymbol{q}(J_{\sigma}) \\ &\text{end loop} \end{aligned}$$



Add to the leaf potentials the interactions from direct neighbors:

loop over all leaf nodes τ

$$\begin{aligned} \boldsymbol{u}(J_{\tau}) &= \boldsymbol{u}(J_{\tau}) + \mathsf{A}(J_{\tau}, J_{\tau}) \, \boldsymbol{q}(J_{\tau}) + \textstyle\sum_{\sigma \in \mathcal{L}_{\tau}^{(\mathrm{nei})}} \, \mathsf{A}(J_{\tau}, J_{\sigma}) \, \boldsymbol{q}(J_{\sigma}) \\ &\text{end loop} \end{aligned}$$



Set $\hat{\boldsymbol{u}}_{\tau} = \boldsymbol{0}$ and $\hat{\boldsymbol{q}}_{\tau} = \boldsymbol{0}$ for all τ .

loop over all leaf nodes τ $\hat{q}_{\tau} = \mathsf{T}_{\tau}^{(\mathrm{ofs})} \, q(J_{\tau})$ end loop

loop over levels $\ell = L, L - 1, ..., 2$ loop over all nodes τ on level ℓ $\hat{q}_{\tau} = \sum_{\sigma \in \mathcal{L}_{\tau}^{(\mathrm{child})}} \mathsf{T}_{\tau,\sigma}^{(\mathrm{ofo})} \hat{q}_{\sigma}$ end loop end loop

 $egin{aligned} \mathbf{loop} & ext{ over all nodes } au \ \hat{m{u}}_{ au} = \hat{m{u}}_{ au} + \sum_{\sigma \in \mathcal{L}_{ au}^{ ext{(int)}}} \mathsf{T}_{ au,\sigma}^{ ext{(ifo)}} \, \hat{m{q}}_{\sigma}. \ \mathbf{end loop} \end{aligned}$

loop over all nodes τ $\hat{\boldsymbol{u}}_{\tau} = \hat{\boldsymbol{u}}_{\tau} + \sum_{\sigma \in \mathcal{L}_{\tau}^{(4)}} \mathsf{T}_{\tau,\sigma}^{(\mathrm{ifs})} \, \boldsymbol{q}(J_{\sigma}).$ end loop

loop over levels $\ell=2, 3, 4, \ldots, L-1$ loop over all nodes τ on level ℓ loop over all children σ of τ $\hat{u}_{\sigma}=\hat{u}_{\sigma}+\mathsf{T}_{\sigma,\tau}^{(\mathrm{ifi})}\hat{u}_{\tau}.$ end loop end loop end loop

 $egin{aligned} \mathbf{loop} & ext{ over all leaf nodes } au \ & oldsymbol{u}(J_{ au}) = \mathsf{T}_{ au}^{(ext{tfi})} \, \hat{oldsymbol{u}}_{ au} \ & ext{end loop} \end{aligned}$

loop over all nodes τ $u(J_{\tau}) = u(J_{\tau}) + \sum_{\sigma \in \mathcal{L}_{\tau}^{(3)}} \mathsf{T}_{\tau,\sigma}^{(\mathrm{tfo})} \, \hat{q}_{\sigma}.$ end loop

loop over all leaf nodes τ $u(J_{\tau}) = u(J_{\tau}) + \mathsf{A}(J_{\tau}, J_{\tau}) \, \boldsymbol{q}(J_{\tau})$ $+ \sum_{\sigma \in \mathcal{L}_{\tau}^{(\mathrm{nei})}} \, \mathsf{A}(J_{\tau}, J_{\sigma}) \, \boldsymbol{q}(J_{\sigma})$ end loop

A summary of the lists needed:

 $\mathcal{L}_{\tau}^{\text{(child)}}$ The children of τ .

 $\mathcal{L}_{\tau}^{(\mathrm{parent})}$ The parent of τ .

 $\mathcal{L}_{\tau}^{\text{(nei)}}$ For a leaf box τ , this is a list of the leaf boxes that directly border τ . For a non-leaf box, $\mathcal{L}_{\tau}^{\text{(nei)}}$ is empty.

 $\mathcal{L}_{\tau}^{(\mathrm{int})}$ A box $\sigma \in \mathcal{L}_{\tau}^{(\mathrm{int})}$ iff σ and τ are on the same level, σ and τ are well-separated, but the parents of σ and τ are not well-separated.

For a leaf box τ , a box $\sigma \in \mathcal{L}_{\tau}^{(3)}$ iff σ lives on a finer level than τ , τ is well-separated from σ , but τ is not well-separated from the parent of σ . For a non-leaf box τ , $\mathcal{L}_{\tau}^{(3)}$ is empty.

 $\mathcal{L}_{\tau}^{(4)}$ The dual of $\mathcal{L}_{\tau}^{(3)}$. In other words, $\sigma \in \mathcal{L}_{\tau}^{(4)}$ if and only if $\tau \in \mathcal{L}_{\sigma}^{(3)}$.

A summary of the translation operators:

