## The Johnson-Lindenstrauss Theorem

The object of this lecture is to introduce and prove the Johnson-Lindenstrauss Theorem. This theorem proves (under certain conditions) that a set of points in a high dimensional space can be embedded into a low dimensional subspace so that distances are preserved.

## 1. PRELIMINARY RESULTS

We begin with a simple result from probability theory, which we state without proof.

**Lemma 1.** Let  $Z \in \chi_k^2$  and  $\epsilon \in (0, \frac{1}{2})$ . Then

$$\mathbb{P}(Z \ge (1+\epsilon)k) \le e^{-\frac{k}{4}(\epsilon^2 - \epsilon^3)},$$

and

$$\mathbb{P}(z \le (1-\epsilon)k) \le e^{-\frac{k}{4}(\epsilon^2 - \epsilon^3)}.$$

The following theorem comes from the theory of random matrices. Heuristically, it gives the probability that multiplying a vector by a random matrix preserves the vector's norm.

**Theorem 2.** Let A be a  $k \times d$  random matrix with i.i.d. entries  $a_{ij} \in N(0,1)$ . Set  $y = \frac{1}{\sqrt{k}}Ax$  so  $f : \mathbb{R}^d \to \mathbb{R}^k$ . Fix  $\epsilon \in (0, \frac{1}{2})$ . Then  $(1 - \epsilon) \|x\|^2 \le \|y\|^2 \le (1 + \epsilon) \|x\|^2$  with probability at least  $1 - 2e^{-\frac{k}{4}(\epsilon^2 - \epsilon^3)}$ .

*Proof.* Set  $Z = \frac{\sqrt{k}}{\|x\|} y$ . Then  $z_i = \frac{1}{\|x\|} \sum_{j=1}^d a_{ij} x_j$ . Each variable  $z_i$  is a linear combination of Gaussian random variables. This tells us gives us three important pieces of information:

- (1)  $z_i$  is a Gaussian random variable.
- (2)  $\mathbb{E}[a_{ij}] = 0 \ \forall i, j.$
- (3) By Theorem 1 (from previous lecture),  $Var(z_i) = \mathbb{E}[z_i^2] = 1$ .

Combining these three facts, we see that  $z_i \in N(0, 1)$ .

Next, observe that  $||z||^2 = \sum_{j=1}^d z_i^2$ , which implies that  $||z||^2 \in \chi_k^2$ . Now, applying Lemma 1,

$$\mathbb{P}(\|y\|^{2} \ge (1+\epsilon)\|x\|^{2}) = \mathbb{P}\left(\frac{\|x\|^{2}\|z\|^{2}}{k} \ge (1+\epsilon)\|x\|^{2}\right)$$
$$= \mathbb{P}(\|z\|^{2} \ge (1+\epsilon)\|x\|^{2})$$
$$\le e^{-\frac{k}{4}(\epsilon^{2}-\epsilon^{3})}. \quad (4)$$

Analogously,

$$\mathcal{P}(\|y\|^2 \le (1-\epsilon)\|x\|^2) \le e^{-\frac{k}{4}(\epsilon^2 - \epsilon^3)}.$$
 (5)

Combining (4) and (5), we have the desired result.

There is also an alternative proof for Theorem 2 that highlights the utility of Gaussian distributions. This proof is outlined below.

*Proof.* Let  $y = \frac{1}{\sqrt{k}}Ax$ , and let H be a unitary map so that

$$Hx = \begin{pmatrix} \|x\| \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

(One might recognize H as a Householder reflector.) We then have that  $y = \frac{1}{\sqrt{k}}Ax = \frac{1}{\sqrt{k}}AH^*Hx$ , due to the fact that H is unitary. Define  $\widetilde{A} = AH^*$ . Using the fact that Gaussian distributions are rotationarily invariant,  $\widetilde{A}$  is a Gaussian matrix as well (with  $\widetilde{a_{ij}} \in N(0, 1)$ ).

Therefore,

$$\frac{1}{\sqrt{k}}\widetilde{A}\left(\begin{array}{c}\|x\|\\0\\0\\\vdots\\0\end{array}\right) = \|x\|\frac{1}{\sqrt{k}}\left(\begin{array}{c}\|x\|\\0\\0\\\vdots\\0\end{array}\right).$$

This implies that  $||y||^2 = \frac{||x||^2}{k} ||g||^2$ , where  $g \in \chi_k^2$ . Once we have result, we can apply Lemma 1 to retrieve the bounds stated in the theorem.

We are now prepared to state and prove the Johnson-Lindenstrauss Theorem.

## 2. The Johnson-Lindenstauss Theorem

The Johnson-Lindenstrauss Theorem is especially useful for data analysis in large dimensions because it allows us to project the data onto a low dimensional subspace while preserving the basic geometry of the data. What follows is a statement about the existence of a low dimensional embedding. However, the proof of the theorem is constructive, so provides a way to build such an embedding (see notes after the proof).

**Theorem 3.** (Johnson-Lindenstrauss): Let Q be a collection of n points in  $\mathbb{R}^d$ . Let  $\epsilon \in (0, \frac{1}{2})$ . Pick an integer  $k \geq \frac{20}{\epsilon^2} \log(n)$ . Then there exists a Lipschitz map  $f = \mathbb{R}^d \to \mathbb{R}^k$  so that  $\forall u, v \in Q$ :

$$(1-\epsilon)\|u-v\|^2 \le \|f(u) - f(v)\|^2 \le (1+\epsilon)\|u-v\|^2. \quad (\star)$$

*Proof.* Set  $y = f(x) = \frac{1}{\sqrt{k}}Ax$  where A is a  $k \times d$  random matrix with  $a_{ij}$  drawn independently from an N(0, 1) distribution. Theorem 2 shows that for any pair  $u, v \in Q$ , the bound  $(\star)$  holds with probability at least  $1 - 2e^{-\frac{k}{4}(\epsilon^2 - \epsilon^3)}$ . There are  $\frac{n(n-1)}{2}$  unique pairs of points u, v. Use a simple union bound. Let  $F_{ij}$  be the event that pair  $\{u_i, u_j\}$  fails. Theorem 2 implies that  $\mathbb{P}(F_{ij}) \leq e^{-\frac{k}{4}(\epsilon^2 - \epsilon^3)}$ . Therefore, the probability that no pair fails is

$$\begin{split} &\leq 1 - \sum_{\substack{\text{distinct pairs} \\ \{i,j\}}} \mathbb{P}(F_{ij}) \\ &\leq 1 - \frac{n(n-1)}{2} e^{-\frac{k}{4}(\epsilon^2 - \epsilon^3)}. \end{split}$$

If we use the k given by the theorem statement, then we see that there is nonzero probability that  $(\star)$  holds. This proves the existence of a low dimensional embedding that preserves distances.

The following are some notes about this result:

- (1) This proof provides a way to construct the map f. Namely, f could be a Gaussian random projection. Statements of the theorem that incorporate a construction of f give a probability that f preserves distances. As k is increased (above the necessary minimal value), the probability that a certain f preserves distances goes to 1 exponentially fast.
- (2) Using Gaussian random projections is in some sense optimal, but other distributions work as well. For example, if the entires of A are drawn from Bournoulli distribution (the set  $\{-1, 1\}$ ), then

$$\frac{1}{\sqrt{k}} \|Ax\| \le (1+\epsilon) \|x\|, \text{ and } \frac{1}{\sqrt{k}} \|Ax\| \ge (1-\epsilon) \|x\|$$

with probability bounded below by  $1 - e^{-\frac{k}{4}(\epsilon^2 - \epsilon^3)}$ .

(3) It is known that the Johnson-Lindenstrauss result is sharp up to a factor of  $\log(\frac{1}{\epsilon})$ . This implies that we can build a set of points that require

$$\Omega\left(\frac{\log(n)}{\epsilon^2\log(\frac{1}{\epsilon})}\right)$$

dimensions to accurately represent the distances between the points.