The Johnson-Lindenstrauss Theorem

The object of this lecture is to introduce and prove the Johnson-Lindenstrauss Theorem. This theorem proves (under certain conditions) that a set of points in a high dimensional space can be embedded into a low dimensional subspace so that distances are preserved.

1. Preliminary Results

We begin with a simple result from probability theory, which we state without proof.
Lemma 1. Let $Z \in \chi_{k}^{2}$ and $\epsilon \in\left(0, \frac{1}{2}\right)$. Then

$$
\mathbb{P}(Z \geq(1+\epsilon) k) \leq e^{-\frac{k}{4}\left(\epsilon^{2}-\epsilon^{3}\right)}
$$

and

$$
\mathbb{P}(z \leq(1-\epsilon) k) \leq e^{-\frac{k}{4}\left(\epsilon^{2}-\epsilon^{3}\right)} .
$$

The following theorem comes from the theory of random matrices. Heuristically, it gives the probability that multiplying a vector by a random matrix preserves the vector's norm.
Theorem 2. Let A be a $k \times d$ random matrix with i.i.d. entries $a_{i j} \in N(0,1)$. Set $y=\frac{1}{\sqrt{k}} A x$ so $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$. Fix $\epsilon \in\left(0, \frac{1}{2}\right)$. Then $(1-\epsilon)\|x\|^{2} \leq\|y\|^{2} \leq(1+\epsilon)\|x\|^{2}$ with probability at least $1-2 e^{-\frac{k}{4}\left(\epsilon^{2}-\epsilon^{3}\right)}$.

Proof. Set $Z=\frac{\sqrt{k}}{\|x\|} y$. Then $z_{i}=\frac{1}{\|x\|} \sum_{j=1}^{d} a_{i j} x_{j}$. Each variable z_{i} is a linear combination of Gaussian random variables. This tells us gives us three important pieces of information:
(1) z_{i} is a Gaussian random variable.
(2) $\mathbb{E}\left[a_{i j}\right]=0 \forall i, j$.
(3) By Theorem 1 (from previous lecture), $\operatorname{Var}\left(z_{i}\right)=\mathbb{E}\left[z_{i}^{2}\right]=1$.

Combining these three facts, we see that $z_{i} \in N(0,1)$.
Next, observe that $\|z\|^{2}=\sum_{j=1}^{d} z_{i}^{2}$, which implies that $\|z\|^{2} \in \chi_{k}^{2}$.
Now, applying Lemma 1,

$$
\begin{align*}
\mathbb{P}\left(\|y\|^{2} \geq(1+\epsilon)\|x\|^{2}\right) & =\mathbb{P}\left(\frac{\|x\|^{2}\|z\|^{2}}{k} \geq(1+\epsilon)\|x\|^{2}\right) \\
& =\mathbb{P}\left(\|z\|^{2} \geq(1+\epsilon)\|x\|^{2}\right) \\
& \leq e^{-\frac{k}{4}\left(\epsilon^{2}-\epsilon^{3}\right)} . \tag{4}
\end{align*}
$$

Analogously,

$$
\begin{equation*}
\mathcal{P}\left(\|y\|^{2} \leq(1-\epsilon)\|x\|^{2}\right) \leq e^{-\frac{k}{4}\left(\epsilon^{2}-\epsilon^{3}\right)} . \tag{5}
\end{equation*}
$$

Combining (4) and (5), we have the desired result.

There is also an alternative proof for Theorem 2 that highlights the utility of Gaussian distributions. This proof is outlined below.

Proof. Let $y=\frac{1}{\sqrt{k}} A x$, and let H be a unitary map so that

$$
H x=\left(\begin{array}{c}
\|x\| \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

(One might recognize H as a Householder reflector.) We then have that $y=\frac{1}{\sqrt{k}} A x=\frac{1}{\sqrt{k}} A H^{*} H x$, due to the fact that H is unitary. Define $\widetilde{A}=A H^{*}$. Using the fact that Gaussian distributions are rotationarily invariant, \widetilde{A} is a Gaussian matrix as well (with $\widetilde{a_{i j}} \in N(0,1)$).
Therefore,

$$
\frac{1}{\sqrt{k}} \widetilde{A}\left(\begin{array}{c}
\|x\| \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)=\|x\| \frac{1}{\sqrt{k}}\left(\begin{array}{c}
\|x\| \\
0 \\
0 \\
\vdots \\
0
\end{array}\right) .
$$

This implies that $\|y\|^{2}=\frac{\|x\|^{2}}{k}\|g\|^{2}$, where $g \in \chi_{k}^{2}$. Once we have result, we can apply Lemma 1 to retrieve the bounds stated in the theorem.

We are now prepared to state and prove the Johnson-Lindenstrauss Theorem.

2. The Johnson-Lindenstauss Theorem

The Johnson-Lindenstrauss Theorem is especially useful for data analysis in large dimensions because it allows us to project the data onto a low dimensional subspace while preserving the basic geometry of the data. What follows is a statement about the existence of a low dimensional embedding. However, the proof of the theorem is constructive, so provides a way to build such an embedding (see notes after the proof).
Theorem 3. (Johnson-Lindenstrauss): Let Q be a collection of n points in \mathbb{R}^{d}. Let $\epsilon \in\left(0, \frac{1}{2}\right)$. Pick an integer $k \geq \frac{20}{\epsilon^{2}} \log (n)$. Then there exists a Lipschitz map $f=\mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ so that $\forall u, v \in Q$:

$$
(1-\epsilon)\|u-v\|^{2} \leq\|f(u)-f(v)\|^{2} \leq(1+\epsilon)\|u-v\|^{2} .
$$

Proof. Set $y=f(x)=\frac{1}{\sqrt{k}} A x$ where A is a $k \times d$ random matrix with $a_{i j}$ drawn independently from an $N(0,1)$ distribution. Theorem 2 shows that for any pair $u, v \in Q$, the bound (\star) holds with probability at least $1-$ $2 e^{-\frac{k}{4}\left(\epsilon^{2}-\epsilon^{3}\right)}$. There are $\frac{n(n-1)}{2}$ unique pairs of points u, v. Use a simple union bound. Let $F_{i j}$ be the event that pair $\left\{u_{i}, u_{j}\right\}$ fails. Theorem 2 implies that $\mathbb{P}\left(F_{i j}\right) \leq e^{-\frac{k}{4}\left(\epsilon^{2}-\epsilon^{3}\right)}$. Therefore, the probability that no pair fails is

$$
\begin{aligned}
& \leq 1-\sum_{\substack{\text { distinct pairs } \\
\{i, j\}}} \mathbb{P}\left(F_{i j}\right) \\
& \leq 1-\frac{n(n-1)}{2} e^{-\frac{k}{4}\left(\epsilon^{2}-\epsilon^{3}\right) .}
\end{aligned}
$$

If we use the k given by the theorem statement, then we see that there is nonzero probability that (\star) holds. This proves the existence of a low dimensional embedding that preserves distances.

The following are some notes about this result:
(1) This proof provides a way to construct the map f. Namely, f could be a Gaussian random projection. Statements of the theorem that incorporate a construction of f give a probability that f preserves distances. As k is increased (above the necessary minimal value), the probability that a certain f preserves distances goes to 1 exponentially fast.
(2) Using Gaussian random projections is in some sense optimal, but other distributions work as well. For example, if the entires of A are drawn from Bournoulli distribution (the set $\{-1,1\}$), then

$$
\frac{1}{\sqrt{k}}\|A x\| \leq(1+\epsilon)\|x\|, \quad \text { and } \quad \frac{1}{\sqrt{k}}\|A x\| \geq(1-\epsilon)\|x\|
$$

with probability bounded below by $1-e^{-\frac{k}{4}\left(\epsilon^{2}-\epsilon^{3}\right)}$.
(3) It is known that the Johnson-Lindenstrauss result is sharp up to a factor of $\log \left(\frac{1}{\epsilon}\right)$. This implies that we can build a set of points that require

$$
\Omega\left(\frac{\log (n)}{\epsilon^{2} \log \left(\frac{1}{\epsilon}\right)}\right)
$$

dimensions to accurately represent the distances between the points.

