Diffusion Geometry Review

Given Points $S=\left\{x_{i}\right\}_{i=1}^{n}$ in \mathbb{R}^{D} we seek some parametrization $\phi: S \rightarrow \mathbb{R}^{k}$ (k should be small) that reveals the geometry (Low dimension structure, clustering).
Introduce a "kernel" $k(x, y)=\exp \left(-\frac{1}{\epsilon^{2}}\|x-y\|^{2}\right)$ where ϵ is a tuning parameter. Let L be the $n \times n$ matrix with entries $L(i, j)=k\left(x_{i}, x_{j}\right)$. Let $D(i, i)=\sum_{j=1}^{n} L(i, j)$. Set $M=L D^{-1}$ then M is a set of transition probabilities for a random walk on S.
For $t=1,2,3, \ldots$ we are interested in the matrix M^{t} of transition probabilities for t steps of the random walk (t is another tuning parameter). Recall symmetrization "trick": set

$$
\tilde{M}=D^{-\frac{1}{2}} M D^{\frac{1}{2}}=D^{-\frac{1}{2}} L D^{-\frac{1}{2}}
$$

So \tilde{M} is symmetric. Compute EVD of $\tilde{M} \cdot \tilde{M}=V \Lambda V^{*}$. Then

$$
M^{t}=D^{\frac{1}{2}} \tilde{M}^{t} D^{-\frac{1}{2}}=D^{\frac{1}{2}} V \Lambda^{t} V^{*} D^{-\frac{1}{2}} .
$$

Assume the evals decaly, and pick a truncation parameter k. Then the (truncated) diffusion distance is

$$
d_{t}(i, j)=\left(\sum_{p=1}^{k} \lambda_{p}^{2 k}\left|v_{p}(i)-v_{p}(j)\right|^{2}\right)^{\frac{1}{2}}
$$

So,

$$
\begin{aligned}
\Phi: S & \rightarrow \mathbb{R}^{k} \\
& i \mapsto\left[\begin{array}{c}
\lambda_{1}^{t} v_{1}(i) \\
\vdots \\
\lambda_{k}^{t} v_{k}(t)
\end{array}\right]=: \mathbb{Z}_{i}
\end{aligned}
$$

Connection to heat conduction. Let $p \in \mathbb{R}^{n}$ be the vector of limiting probabilities $p=\lim _{t \rightarrow \infty} M^{t} p_{0}$. Recall $M p=p \Rightarrow L D^{-1} p=p \Rightarrow\left(L D^{-1}-I\right) p=0 \Rightarrow(L-D) D^{-1} p=0$ where $(L-D)$ is graph Laplacian .
Ex. Square lattice in 2D. Consider heat conduction. Let $u \in \mathbb{R}^{n}$ be the vector of temperatures.

$$
\left(u_{w}+u_{e}+u_{n}+u_{s}\right)-4 u_{c}=0 .
$$

Standard 5-point stencil

$$
L=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 4 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], D=\left[\begin{array}{lllll}
8 & & & & \\
& 8 & & & \\
& & 8 & & \\
& & & 8 & \\
& & & & 8
\end{array}\right]
$$

and

$$
A=L-D=\left[\begin{array}{llllll}
8 & & & & \\
& 8 & & & \\
1 & 1 & -4 & 1 & 1 \\
& & & 8 & \\
& & & & 8
\end{array}\right]
$$

Graph Laplacian $A u=0$. Heat conduction $\frac{\partial u}{\partial t}=A u$, solution $u=\exp (A t) u_{0}$ where $\exp (A t)$ is heat kernel and u_{0} is initial value.
Recall n points $\left\{x_{i}\right\}_{i=1}^{n}$ in \mathbb{R}^{D},
Computation issues: If n is large, e.g. $10^{3} \leq n \leq 10^{9}, D$ can be large! $D=2,3, \cdots 10^{3}$. Cost to assemble L is $O\left(D n^{2}\right)$. Cost to compute top k evecs \& evals of L is $O\left(k n^{2}\right)$. This is prohibitive when n is large.

Observe that many entries of L are very close to 0 . Let us modify the kernel function. Pick a truncation distance δ and set

$$
k(x, y)=\left\{\begin{array}{cl}
\exp \left(-\frac{1}{\epsilon^{2}}\|x-y\|^{2},\right. & \text { if }\|x-y\| \leq \delta \\
0 & \text { if }\|x-y\|>\delta
\end{array}\right.
$$

This sparsifies L. On row i of L, the only non-zero entries $L(i, j)$ are the ones for which $\|x-y\| \leq \delta$. Then \tilde{M} is sparse, and we can use e.g. Lanczos to compute the top k evals \& evecs.

Problem: Finding the nearest neighbors can be costly. If done naivey, the cost is still $D n^{2}$.
Solution - first try.
Say $D=2$. Put down quad tree on domain. Assume points are distributed fairly uniformly. Cost to build the tree $\sim n$. Cost to search $\leq n$.

In 2 D , the number of neighbors boxes $=3^{2}-1=8$. In n - D , the number of neighbors boxes $=3^{n}-1$. This method scales abysmally with dimension.

Let us consider a non-uniform distribution. Build the tree adaptively. Split boxes only with "many" points in them. This still scales very badly with dimension. The search stage can get nasty.
"K-d trees": A technique to make tree searches work well for non-uniform distributions and for "sort of" high dimensions.
"Binary tree":

