Johnson-Lindenstrauss Theory

Let $Q=\left\{x_{i}\right\}_{i=1}^{n}$ be a set of points in \mathbb{R}^{d}. Think of d as being large, so that tree-based methods may not perform well. Suppose we are interested in analyzing the geometry of the set Q. For example, we could be interested in nearest-neighbors search, finding low-dimensional structure, etc.

It is natural to look for a map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ that maps the points to \mathbb{R}^{k}, where $k<d$. Desirable properties of f include:

- nice continuity (J-L gives a linear, Lipschitz map)
- We would like k to be reasonably small (J-L gives $k \sim \log n$ independent of d)
- We want to approximately preserve pairwise distances:

$$
\left\|x_{i}-x_{j}\right\| \approx\left\|f\left(x_{i}\right)-f\left(x_{j}\right)\right\| \quad \forall x_{i}, x_{j} \in Q .
$$

- We want to approximately preserve angles:

$$
\left\langle x_{i}-x_{j}, x_{p}-x_{j}\right\rangle \approx\left\langle f\left(x_{i}\right)-f\left(x_{j}\right), f\left(x_{p}\right)-f\left(x_{j}\right)\right\rangle \quad \forall x_{i}, x_{p}, x_{j} \in Q .
$$

The Johnson-Lindenstrauss theorem asserts that there exists a linear map f and that image dimension k will scale as $\log n$ with no dependence on the original dimension d. From a practical perspective, we often choose f as a random projection (e.g. a "short fat matrix").

1. BRIEF REVIEW of basic probability

Let us briefly review basic probability and introduce our notation. Let $X \in \mathbb{R}$ be a random variable with probability density function p. The mean of X is

$$
\mu=\mathbb{E}[X]=\int_{\mathbb{R}} x p(x) \mathrm{d} x .
$$

The variance of X is

$$
\sigma^{2}=\operatorname{Var}(X)=\mathbb{E}\left[(X-\mu)^{2}\right]=\int_{\mathbb{R}}(x-\mu)^{2} p(x) \mathrm{d} x .
$$

Example 1. Let $X \sim \mathcal{N}(0,1)$ be sampled from the standard normal distribution. We have $p(x)=(2 \pi)^{-1 / 2} e^{-x^{2} / 2}$. Using a symmetry argument,

$$
\mu=\int_{\mathbb{R}} x \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \mathrm{~d} x=0
$$

With a bit more work, one can show

$$
\sigma^{2}=\int_{\mathbb{R}} x^{2} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \mathrm{~d} x=1
$$

Example 2. Let

$$
\mathbf{A}=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

be a 2×2 random matrix where the entries a, b, c, d are independent and have mean 0 and variance 1 . Fix $x \in \mathbb{R}^{2}$; note that x is not a random variable, but an arbitrary vector. Set $y=\mathbf{A} x$; note that y is a random variable. Let's compute $\mathbb{E}\left[\|y\|^{2}\right]$. We have

$$
\|y\|^{2}=y_{1}^{2}+y_{2}^{2}=\frac{1}{2}\left(a x_{1}+b x_{2}\right)^{2}+\frac{1}{2}\left(c x_{1}+d x_{2}\right)^{2} .
$$

Observe that y_{1} is independent from y_{2}, since x is fixed and the entries of \mathbf{A} are independent. Expectation is linear, so we may write

$$
\mathbb{E}\left[\|y\|^{2}\right]=\mathbb{E}\left[y_{1}^{2}\right]+\mathbb{E}\left[y_{2}^{2}\right] .
$$

Observe that all the entries of \mathbf{A} are independent with mean 0 and variance 1. Therefore we have

$$
\begin{aligned}
\mathbb{E}\left[y_{1}^{2}\right] & =\frac{1}{2} \mathbb{E}\left[a^{2} x_{1}^{2}+2 a b x_{1} x_{2}+b^{2} x_{2}^{2}\right]=\frac{1}{2} x_{1}^{2} \mathbb{E}\left[a^{2}\right]+x_{1} x_{2} \mathbb{E}[a b]+\frac{1}{2} x_{x}^{2} \mathbb{E}\left[b^{2}\right] \\
& =\frac{1}{2} x_{1}^{2}+x_{1} x_{2} \mathbb{E}[a] \mathbb{E}[b]+\frac{1}{2} x_{2}^{2}=\frac{1}{2} x_{1}^{2}+0+\frac{1}{2} x_{2}^{2} \\
& =\frac{1}{2}\|x\|^{2} .
\end{aligned}
$$

Analogously, we know $\mathbb{E}\left[y_{2}^{2}\right]=\|x\|^{2} / 2$, and so we have $\mathbb{E}\left[\|y\|^{2}\right]=\|x\|^{2}$. In other words, the expected value of $\|y\|^{2}$ is $\|x\|^{2}$, so the random matrix \mathbf{A} preserves the squared 2 -norm in expected value. Note that we do not yet know anything about the variance of $\|y\|^{2}$.

The above example generalizes to the case of a random $k \times d$ matrix.
Theorem 1. Let \mathbf{A} be a $k \times d$ random matrix with entries that are independent and have mean 0 and variance 1 . Given $x \in \mathbb{R}^{d}$, set $y=\frac{1}{\sqrt{k}} \mathbf{A}$. Then $\mathbb{E}\left[\|y\|^{2}\right]=\|x\|^{2}$.

Proof. Due to linearity,

$$
\mathbb{E}\left[\|y\|^{2}\right]=\sum_{i=1}^{k} \mathbb{E}\left[y_{i}^{2}\right] .
$$

Following the example, we have

$$
\mathbb{E}\left[y_{i}^{2}\right]=\frac{1}{k} \mathbb{E}\left[\left(\sum_{j=1}^{d} a_{i j} x_{j}\right)\right]=\frac{1}{k} \mathbb{E}\left[\sum_{j, p=1}^{d} a_{i j} x_{j} a_{i p} x_{p}\right] .
$$

Since the entries $a_{i j}$ are independent, mean 0 , and variance 1 , we know $\mathbb{E}\left[a_{i j} a_{i p}\right]=\delta_{j p}$, where $\delta_{j p}$ is the Kronecker delta ($\delta_{j p}=1$ if $j=p$ and 0 otherwise). Using this to simplify the double sum, we have

$$
\mathbb{E}\left[y_{i}\right]^{2}=\frac{1}{k} \mathbb{E}\left[\sum_{j=1}^{d} a_{i j}^{2} x_{j}^{2}\right]=\frac{1}{k} \sum_{j=1}^{d} x_{j}^{2} \mathbb{E}\left[a_{i j}^{2}\right]=\frac{1}{k}\|x\|^{2} .
$$

Combining everything, we have the desired result.
There are many matrices that satisfy the conditions of Theorem 1. For instance, if the entries $a_{i j}$ are sampled independently from $N(0,1)$, or ± 1 with probability $1 / 2$ (Bernoulli variables), then the conditions are satisfied. Again note that we know the expected value of $\|y\|^{2}$, but nothing about the variance (which could be unreasonably large).

Theorem 2. Let A be a $k \times d$ random matrix with entries sampled independently from $N(0,1)$. Fix $\epsilon \in(0,1 / 2)$. Then

$$
(1-\epsilon)\|x\|^{2} \leq\|y\|^{2} \leq(1+\epsilon)\|x\|^{2}
$$

with probability at least $1-2 e^{-\left(\epsilon^{2}-\epsilon^{3}\right) k / 4}$.
Proof. Set $z=\frac{\sqrt{k}}{\|x\|} y$. Then

$$
z_{i}=\frac{\sqrt{k}}{\|x\|^{2}} y_{i}=\frac{1}{\|x\|} \sum_{j=1}^{d} a_{i j} x_{j} .
$$

Notice that z_{i} is a Gaussian random variable, since it is a linear combination of Gaussian random variables. We easily compute

$$
\mathbb{E}\left[z_{i}\right]=\frac{1}{\|x\|} \sum_{j=1}^{d} x_{j} \mathbb{E}\left[a_{i j}\right]=0
$$

In the proof of Theorem 1, we showed $\mathbb{E}\left[z_{i}\right]^{2}=1$. Thus, since Gaussian random variables are completely determined by their mean and (co)variance, each $z_{i} \sim N(0,1)$, and they are all independent.

The proof will continue next time. After some algebra, we find

$$
\text { Prob }\left[\|y\|^{2}>(1+\epsilon)\|x\|^{2}\right]=\operatorname{Prob}\left[\sum_{i=1}^{k} z_{i}^{2}>(1+\epsilon) k\right] .
$$

