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Johnson-Lindenstrauss Theory
Let Q = {xi}ni=1 be a set of points in Rd. Think of d as being large, so that tree-based methods may not perform
well. Suppose we are interested in analyzing the geometry of the set Q. For example, we could be interested in
nearest-neighbors search, finding low-dimensional structure, etc.
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It is natural to look for a map f : Rd → Rk that maps the points to Rk, where k < d. Desirable properties of f
include:

• nice continuity (J-L gives a linear, Lipschitz map)
• We would like k to be reasonably small (J-L gives k ∼ log n independent of d)
• We want to approximately preserve pairwise distances:

‖xi − xj‖ ≈ ‖f(xi)− f(xj)‖ ∀xi, xj ∈ Q.

• We want to approximately preserve angles:

〈xi − xj , xp − xj〉 ≈ 〈f(xi)− f(xj), f(xp)− f(xj)〉 ∀xi, xp, xj ∈ Q.
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The Johnson-Lindenstrauss theorem asserts that there exists a linear map f and that image dimension k will scale
as log n with no dependence on the original dimension d. From a practical perspective, we often choose f as a
random projection (e.g. a “short fat matrix”).

1. BRIEF REVIEW OF BASIC PROBABILITY

Let us briefly review basic probability and introduce our notation. Let X ∈ R be a random variable with probability
density function p. The mean of X is

µ = E[X] =

∫
R
xp(x)dx.

The variance of X is

σ2 = Var(X) = E
[
(X − µ)2

]
=

∫
R
(x− µ)2p(x)dx.
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Example 1. Let X ∼ N (0, 1) be sampled from the standard normal distribution. We have p(x) = (2π)−1/2e−x2/2.
Using a symmetry argument,

µ =

∫
R
x

1√
2π

e−x2/2dx = 0.

With a bit more work, one can show

σ2 =

∫
R
x2

1√
2π

e−x2/2dx = 1.

Example 2. Let

A =
1√
2

[
a b
c d

]
be a 2× 2 random matrix where the entries a, b, c, d are independent and have mean 0 and variance 1. Fix x ∈ R2;
note that x is not a random variable, but an arbitrary vector. Set y = Ax; note that y is a random variable. Let’s
compute E[‖y‖2]. We have

‖y‖2 = y21 + y22 =
1

2
(ax1 + bx2)

2 +
1

2
(cx1 + dx2)

2 .

Observe that y1 is independent from y2, since x is fixed and the entries of A are independent. Expectation is linear,
so we may write

E
[
‖y‖2

]
= E[y21] + E[y22].

Observe that all the entries of A are independent with mean 0 and variance 1. Therefore we have

E[y21] =
1

2
E[a2x21 + 2abx1x2 + b2x22] =

1

2
x21E[a2] + x1x2E[ab] +

1

2
x2xE[b2]

=
1

2
x21 + x1x2E[a]E[b] +

1

2
x22 =

1

2
x21 + 0 +

1

2
x22

=
1

2
‖x‖2.

Analogously, we know E[y22] = ‖x‖2/2, and so we have E[‖y‖2] = ‖x‖2. In other words, the expected value of
‖y‖2 is ‖x‖2, so the random matrix A preserves the squared 2-norm in expected value. Note that we do not yet
know anything about the variance of ‖y‖2.

The above example generalizes to the case of a random k × d matrix.

Theorem 1. Let A be a k × d random matrix with entries that are independent and have mean 0 and variance 1.
Given x ∈ Rd, set y = 1√

k
Ax. Then E[‖y‖2] = ‖x‖2.

Proof. Due to linearity,

E[‖y‖2] =
k∑

i=1

E[y2i ].

Following the example, we have
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E[y2i ] =
1

k
E

 d∑
j=1

aijxj

 =
1

k
E

 d∑
j,p=1

aijxjaipxp

 .

Since the entries aij are independent, mean 0, and variance 1, we know E[aijaip] = δjp, where δjp is the Kronecker
delta (δjp = 1 if j = p and 0 otherwise). Using this to simplify the double sum, we have

E[yi]2 =
1

k
E

 d∑
j=1

a2ijx
2
j

 =
1

k

d∑
j=1

x2jE[a2ij ] =
1

k
‖x‖2.

Combining everything, we have the desired result. �

There are many matrices that satisfy the conditions of Theorem 1. For instance, if the entries aij are sampled
independently from N(0, 1), or ±1 with probability 1/2 (Bernoulli variables), then the conditions are satisfied.
Again note that we know the expected value of ‖y‖2, but nothing about the variance (which could be unreasonably
large).

Theorem 2. Let A be a k × d random matrix with entries sampled independently from N(0, 1). Fix ε ∈ (0, 1/2).
Then

(1− ε)‖x‖2 ≤ ‖y‖2 ≤ (1 + ε)‖x‖2

with probability at least 1− 2e−(ε2−ε3)k/4.

Proof. Set z =
√
k

‖x‖y. Then

zi =

√
k

‖x‖2
yi =

1

‖x‖

d∑
j=1

aijxj .

Notice that zi is a Gaussian random variable, since it is a linear combination of Gaussian random variables. We
easily compute

E[zi] =
1

‖x‖

d∑
j=1

xjE[aij ] = 0.

In the proof of Theorem 1, we showed E[zi]2 = 1. Thus, since Gaussian random variables are completely deter-
mined by their mean and (co)variance, each zi ∼ N(0, 1), and they are all independent.

The proof will continue next time. After some algebra, we find

Prob
[
‖y‖2 > (1 + ε)‖x‖2

]
= Prob

[
k∑

i=1

z2i > (1 + ε)k

]
.

�
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