Diffusion Geometry

Consider a set of points $\left\{x_{i}\right\}_{j}^{n}=1$ in \mathbb{R}^{n}

Goals:-

* Find nonlinear low dimensional structures.
- Parameterization.
* Clustering/Classification.

We seek a nonlinear map $\phi=\mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$
now, consider a random walk on the points. Suppose the probability of jumping from X_{j} to X_{i} is $\approx k\left(X_{i}, X_{j}\right)$ for some kernel function k .

Common choices:

* $k(x, y)=k(y, x)$.
* $e^{-\frac{1}{\varepsilon^{2}}|x-y|^{2}}$ (usually the best one)

We Need:

* $k(x, y)=k(y, x)$.
* $k(x, y) \geq 0 \forall x, y$.
* Often, we require $\sum_{i, j=1}^{n} q: k\left(x_{i}, x_{j}\right) q_{j} \geq 0$ for every vector q

Set:

* $k(x, y)=k(y, x)$.
* $k(x, y) \geq 0 \forall x, y$.
* Often, we require $\sum_{i, j=1}^{n} q: k\left(x_{i}, x_{j}\right) q_{j} \geq 0$ for every vector q

Set $L(i, j)=k\left(x_{i}, x_{j}\right)$. L is an n n matrix but not of transition probabilities since the columns do not sum to 1 .
Let us fix this:
Define diagonal matrix D via

$$
D(i, j)=\sum_{j=1}^{n} L(i, j)
$$

Then,

$$
M=L D^{-1}
$$

where M is of transition probabilities.
For $t=1,2,3, \ldots$, the matrix M^{t} holds the transition probabilities for t steps of the random walk. We seek to compute the eigenvectors and eigenvalues of M^{t}.

$$
\text { Set } \widetilde{M}=D^{-\frac{1}{2}} M D^{\frac{1}{2}}=D^{-\frac{1}{2}} L D^{-1} D^{\frac{1}{2}}=D^{-\frac{1}{2}} L D^{-\frac{1}{2}} \text {. }
$$

Note: Since L is symmetric, \widetilde{M} is also symmetric.
Recall:

* Let B be an invertable matrix.
* Let A be a matrix of the same size as B.

Then λ is an eval of A if and only if λ is an eval of $B^{-1} A B$. Proof:

$$
A v=\lambda v \Leftrightarrow B^{-1} A v=B^{-1} \lambda v \Leftrightarrow B^{-1} A B B^{-1} v=\lambda B^{-1} v
$$

Thus, \widetilde{M} is symmetric and has the same evals as M.

$$
M^{t}=\left(D^{\frac{1}{2}} \widetilde{M} D^{-\frac{1}{2}}\right)^{t}=D^{\frac{t}{2}} \widetilde{M}^{t} D^{-\frac{t}{2}}
$$

Let us compute the eigenvalue decomposition of \widetilde{M} so that $\widetilde{M}=V \Lambda V^{*}$

$$
\begin{gathered}
\text { where } \Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right] . \\
\text { So } M^{t}=D^{\frac{1}{2}} V \Lambda^{t} V^{*} D^{-\frac{1}{2}}
\end{gathered}
$$

The evals typically decay. The faster they decay, the better the points organize on a low rank structure.
Let us define the diffusion distance:

$$
d(i, j):=\left(\sum_{p=1}^{n} \lambda_{p}^{2 t}\left|V_{p}(i)-V_{p}(j)\right|^{2}\right)^{\frac{1}{2}}
$$

$\left\{\lambda_{j}^{2 t}\right\}_{j=1}^{n}$ decays quickly, so we truncate:

$$
\begin{gathered}
d(i, j) \approx\left(\sum_{p=1}^{k} \lambda_{p}^{2 t}\left|V_{p}(i)-V_{p}(j)\right|^{2}\right)^{\frac{1}{2}} \\
=\left\|\phi_{(i)}-\phi_{(j)}\right\| \\
\text { where } \phi=\left[\begin{array}{c}
\lambda_{1}^{t} V_{1}(i) \\
\lambda_{2}^{t} V_{2}(i) \\
\lambda_{3}^{t} V_{3}(i) \\
\vdots \\
\lambda_{k}^{t} V_{k}(i)
\end{array}\right] .
\end{gathered}
$$

$p h i$ is a nonlinear map from $\left\|X_{i}\right\|_{i=1}^{n}$ to \mathbb{R}^{k}

