Diffusion Geometry

Consider a set of points $\{x_i\}_j^n = 1$ in \mathbb{R}^n

Î			
	1 Alexandress of the second se		
	in the second se		Filler (Fille)
	and the second sec		(Herris and
	C. The		
R°			1
			R ^D
		k K	

Goals:-

- * Find nonlinear low dimensional structures.
 - Parameterization.
- * Clustering/Classification.

We seek a nonlinear map $\phi = \mathbb{R}^n \to \mathbb{R}^k$

now, consider a random walk on the points. Suppose the probability of jumping from X_j to X_i is $\approx k(X_i, X_j)$ for some kernel function k.

Common choices:

*
$$k(x,y) = k(y,x)$$
.
* $e^{-\frac{1}{\varepsilon^2}|x-y|^2}$ (usually the best one)

We Need:

$$\begin{array}{l} * \ k(x,y) = k(y,x). \\ * \ k(x,y) \geq 0 \ \forall x,y. \\ * \ \text{Often, we require } \sum_{i,j=1}^{n} q : k(x_i,x_j)q_j \geq 0 \text{ for every vector } q \end{array}$$

Set:

*
$$k(x, y) = k(y, x)$$
.
* $k(x, y) \ge 0 \forall x, y$.
* Often, we require $\sum_{i,j=1}^{n} q : k(x_i, x_j)q_j \ge 0$ for every vector q

Set $L(i, j) = k(x_i, x_j)$. L is an n x n matrix but not of transition probabilities since the columns do not sum to 1. Let us fix this:

Define diagonal matrix D via

$$D(i,j) = \sum_{j=1}^{n} L(i,j)$$

Then,

$$M = LD^{-1}$$

where M is of transition probabilities.

For t = 1, 2, 3, ..., the matrix M^t holds the transition probabilities for t steps of the random walk. We seek to compute the eigenvectors and eigenvalues of M^t .

Set
$$\widetilde{M} = D^{-\frac{1}{2}}MD^{\frac{1}{2}} = D^{-\frac{1}{2}}LD^{-1}D^{\frac{1}{2}} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}}.$$

Note: Since L is symmetric, \widetilde{M} is also symmetric.

Recall:

- * Let B be an invertable matrix.
- * Let A be a matrix of the same size as B.

Then λ is an eval of A if and only if λ is an eval of $B^{-1}AB$. Proof:

$$Av = \lambda v \Leftrightarrow B^{-1}Av = B^{-1}\lambda v \Leftrightarrow B^{-1}ABB^{-1}v = \lambda B^{-1}v$$

Thus, \widetilde{M} is symmetric and has the same evals as M.

$$M^{t} = (D^{\frac{1}{2}}\widetilde{M}D^{-\frac{1}{2}})^{t} = D^{\frac{t}{2}}\widetilde{M}^{t}D^{-\frac{t}{2}}$$

Let us compute the eigenvalue decomposition of \widetilde{M} so that $\widetilde{M} = V\Lambda V^*$

where
$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0\\ 0 & \lambda_2 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

So $M^t = D^{\frac{1}{2}} V \Lambda^t V^* D^{-\frac{1}{2}}$

The evals typically decay. The faster they decay, the better the points organize on a low rank structure. Let us define the diffusion distance:

$$d(i,j) := \left(\sum_{p=1}^{n} \lambda_p^{2t} |V_p(i) - V_p(j)|^2\right)^{\frac{1}{2}}$$

 $\left\{\lambda_{j}^{2t}\right\}_{j=1}^{n}$ decays quickly, so we truncate:

$$d(i,j) \approx \left(\sum_{p=1}^{k} \lambda_p^{2t} |V_p(i) - V_p(j)|^2\right)^{\frac{1}{2}}$$
$$= \left\|\phi_{(i)} - \phi_{(j)}\right\|$$
where $\phi = \begin{bmatrix} \lambda_1^t V_1(i) \\ \lambda_2^t V_2(i) \\ \lambda_3^t V_3(i) \\ \vdots \\ \lambda_k^t V_k(i) \end{bmatrix}$.

phi is a nonlinear map from $||X_i||_{i=1}^n$ to \mathbb{R}^k