1. Latent Semantic Indexing

Monday, March 14, 2016:

1.1. Intuition. Objective is to classify bodies of text.

Idea:form a matrix B that records the incidence of words ("terms") in your database.
Then every term frequency $-t f_{i j}$ of that matrix will be the number of times term i appears in document j. Typically, we would filter out the terms that don't carry much meaning.
1.2. Method. From B, we can construct a matrix A defined by:

$$
\mathbf{A}_{i j}=\log \left(t f_{i j}+1\right)\left(1+\frac{\sum_{j=1}^{n} p_{i j} \log p_{i j}}{\log (n)}\right)
$$

where: $p_{i j}=\frac{t f_{i j}}{g f_{i}}, g f_{i}=\sum_{j=1}^{n} t f_{i j}=1$ for any j.

Perform SVD on A:

$$
\underset{n \times n}{\mathbf{A}} \approx \underset{m \times k}{\mathbf{T}} \underset{k \times k}{\mathbf{S}} \underset{k \times n}{\mathbf{D}^{*} .}
$$

where, \mathbf{T} - term concept matrix, \mathbf{D} - concept-document matrix
1.3. Non-linear techniques. Often, the relationship between the data is nonlinear. Approach to resolve such problem is Kernel PCA:

Kernel PCA:

We construct a non-linear transformation on the given data X such that PCA algorithm can pick out clusters. Problem with such algorithm is that it's hard to come up with a non-linear map that solved the problem of nonlinearity.
Example: In the following example, we are given a data that forms two circles with different radius. A kernel trick that could easily distinguish the two datasets is to add a third dimension that is formed by $x^{2}+y^{2}$ from existing dimensions of x and y. We see the result of such kernel map on the image.

2. DIFfusion Maps

2.1. Markov Chains review. Use distance between 2 points as a probability of jump in Markov chain matrix.

Markov Chains give us a way to estimate what event will be likely after arbitrary number of steps that the systems will take. For more intuition, let's consider an example.

Stock Market:

Say we have 3 states:
(1) Bull
(2) Bear
(3) Stagnant

Given \mathbf{P} - probability transition matrix, and $\$_{0}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ - initial distribution:

$$
\mathbf{P}=\left[\begin{array}{ccc}
0.9 & 0.15 & 0.25 \\
0.075 & 0.8 & 0.25 \\
0.025 & 0.05 & 0.5
\end{array}\right]
$$

Figure 1. Original data (left), Kernel transformed data (right).
We can estimate that after 1 step, our distribution of each state will be as following:

$$
\$_{1}=\mathbf{P} \$_{0}=\left[\begin{array}{c}
0.9 \\
0.075 \\
0.025
\end{array}\right]
$$

After infinitely many steps, in this example we would get a stationary distribution of. We can argue that a Markov Chain admits SVD :

$$
\mathbf{P}=\mathbf{V} \Lambda \mathbf{V}^{-1}
$$

, where:

$$
\Lambda=\left[\begin{array}{cccc}
\lambda_{1}=1 & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

Then,

$$
\mathbf{P}^{k}==\mathbf{V} \Lambda^{k} \mathbf{V}^{-1}=\mathbf{V}\left[\begin{array}{cccc}
\lambda_{1}^{k} & 0 & \cdots & 0 \\
0 & \lambda_{2}^{k} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \lambda_{n}^{k}
\end{array}\right] \mathbf{V}^{-1} \rightarrow \mathbf{V}\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right] \mathbf{V}^{-1}
$$

In our example:

$$
\mathbf{P}^{k}=\left[\begin{array}{ccc}
0.625 & 0.625 & 0.625 \\
0.3125 & 0.3125 & 0.3125 \\
0.0625 & 0.0625 & 0.0625
\end{array}\right]
$$

We see that we lost any knowledge of where we started, because all columns converged to the same vector.

