1. Summary of PCA

Let Z be an $m \times n$ matrix. Each column \mathbb{Z}_{j} is a sample from a multivariate normal distribution on \mathbb{R}^{n}.
(1) Compute means:

$$
\mu=\frac{1}{n} Z * \operatorname{ones}(n, 1)
$$

(2) Subtract means:

$$
X=Z-\mu * \operatorname{ones}(1, n)
$$

(3) Compute SVD

$$
X=U D V^{*}
$$

(4) Pick truncation rank

Figure 1. Lucky

Figure 2. Typical
(5) Truncate $X \approx U D V^{*}\left\{u_{j}\right\}_{j=1}^{k}$ are principle directions.

Set $Y=U^{*} X$, then

$$
x_{j} \approx y_{1 j} u_{1}+y_{2 j} u 2+\cdots+y_{k j} u_{k}
$$

PCA crucially relies on the assumption that the data is drawn from a distribution that at least approximately multivariate normal.

2. LEVERAGE SCORES FOR FINDING SPANNING COLUMNS

Let A be $m \times n$ of approximate rank k. We seek to determine a set J_{s} of spanning columns such that

$$
A \approx C X
$$

where $C=A\left(:, J_{s}\right)$. We want elements of X to be small.
Options for finding J_{s} :
(1) draw k indices from $\{1,2, \cdots, n\}$ at random, with equal probability weights. It turns out that this is bad.

Example:

$$
A=\left[\begin{array}{cc}
I_{k} & 0 \\
0 & 0
\end{array}\right]
$$

(2) Draw random rotation matrix Q of size $n \times n\left(\right.$ so $\left.Q^{*} Q=I\right)$. Set $\tilde{A}=A Q$. Drawing k columns at random from \tilde{A} will work well. For instance, set $\tilde{J}_{s}=[1,2, \cdots, k]$,

$$
\tilde{A}(:, 1: k)=A Q(:, 1: k)
$$

A Gaussian random matrix of size $n \times k$ does almost the same sampling.
Note 1. We only pick basis for $\operatorname{col}(A)$, we do not identify column of A.
Note 2. Slight oversampling is necessary.
Note 3. Recall SRFT

$$
Y=A D F S
$$

where D is a random diagonal matrix, F is discrete Fourier transform matrix, S is subsampling matrix and $Q=D F$.
Q is random rotations but it is not drawn uniformly from the set of all random rotations.
(3) Compute column norms of A and use these to compute sampling probabilities. Set

$$
c_{j}=\|A(:, j)\|^{2} \quad \text { for } \quad j=1,2, \cdots, n
$$

Set

$$
p_{j}=\frac{c_{j}}{c_{1}+c_{2}+\cdots+c_{n}}=\frac{c_{j}}{\|A\|_{F}}
$$

Example:

$$
\begin{gathered}
A=\left[\begin{array}{cc}
I_{k} & 0 \\
0 & 0
\end{array}\right] \\
c_{1}=c_{2}=\cdots=c_{k}=1, c_{k+1}=c_{k+2}=\cdots=c_{n}=0 \\
p_{1}=p_{2}=\cdots=p_{k}=\frac{1}{k}, p_{k+1}=p_{k+2}=\cdots=p_{n}=0
\end{gathered}
$$

You will draw $J_{s}=[1,2, \cdots, k]$ with probability 1 .
Example:

$$
A=\left[\begin{array}{ccc}
10 & 20 & 0 \\
10 & 20 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

So $\operatorname{rank}(A)=2$ and

$$
\begin{gathered}
c_{1}=200, c_{2}=800, c_{3}=1 \\
p_{1}=\frac{200}{1001}, p_{2}=\frac{800}{1001}, p_{3} \approx 0
\end{gathered}
$$

Very likely you will pick $J_{s}=[1,2]$.
(4) Compute full SVD, then truncate to the top k dominant terms:

$$
A \approx U D V^{*}
$$

Let p_{j} be the square norm of j th column of V^{*}, then

$$
p_{j}=\frac{1}{k} \sum_{i=1}^{k}|V(j, i)|^{2}
$$

Observe:

$$
\sum_{j=1}^{n} p_{j}=\sum_{j=1}^{n} \frac{1}{k} \sum_{i=1}^{k}|V(j, i)|^{2}=\frac{1}{k} \sum_{i=1}^{k} \sum_{j=1}^{n}|V(j, i)|^{2}=1
$$

One can prove that if J_{s} is drawn from $\{1,2, \cdots, n\}$ without replacement, and with sampling probabilities $\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$, then the chosen J_{s} is with high probability good.

Issue 1. Compute SVD is expensive.
Issue 2. In practice, you may as well perform the second step deterministically. Simply execute CPQR on the matrix $D V^{*}$.

