Matrix factorizations and low rank approximation

Friday, March 11, 2016:

1. Eigenfaces

In this section, we learn intuition and math behind Eigenfaces, a technique to apply matrix SVD factorization to identify people's faces from the database.
1.1. Image manipulation. Let's assume we have n images of people's faces that are:

- Grey scale
- Same size $\left(m_{1} \times m_{2}\right)$
- Same position/orientation of the face

For the method to work, let's reshape the matrix into one column vector that contains all of the image's information:

$$
\underset{m_{1} \times m_{2}}{\text { Face_Image }} \rightarrow \stackrel{\mathbf{t}_{\mathbf{1}}}{m_{1} * m_{2} \times 1}
$$

After transforming each image into a vector, we can align them together to get the matrix:

$$
\mathbf{T}=\left[\mathbf{t}_{\mathbf{1}}, \mathbf{t}_{2}, \cdots, \mathbf{t}_{\mathbf{n}}\right] .
$$

Usually, $m \gg n$.
1.2. EVD - eigenvalue decomposition. In this method, we seek to compress T such that:

$$
\begin{gathered}
\mathbf{S}=\mathbf{T T}^{*} \\
\mathbf{S}=\mathbf{U D U}^{*}
\end{gathered}
$$

Then, let's pick a tolerance measure to pick k eigenvalues that reconstruct matrix \mathbf{S} sufficiently accurately:

$$
\frac{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}}{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}}<1-\text { tolerance }
$$

Therefore, we have a matrix:

$$
\underset{m \times m}{\mathbf{S}} \approx \underset{m \times k}{\mathbf{U}} \underset{k \times k}{\mathbf{D}} \underset{k \times m}{\mathbf{U}^{*}}
$$

Where, vectors u_{i} for $i \in[1 \ldots k]$, are the "eigenfaces". They form an approximate basis for the columns of T. Therefore, our reconstruction of original matrix \mathbf{T} is:

$$
\mathbf{T} \approx \mathbf{U U}^{*} \mathbf{T}=\mathbf{U} \hat{\mathbf{T}}
$$

where,

$$
\hat{\mathbf{T}}=\underset{1}{\mathbf{U}^{*} \mathbf{T}}
$$

Useful applications.

(1) Storage efficiency: store only matrices \mathbf{U} and $\hat{\mathbf{T}}$ instead of \mathbf{T}.
(2) Face recognition: given a new face image encoded in a vector $-\mathbf{S}$, we can attempt to find an image $\mathbf{t}_{\mathbf{j}}$ in our database that's closest to \mathbf{S}.
Our job is to find $i=\operatorname{argmin}\left\|\mathbf{t}_{\mathbf{p}}-\mathbf{S}\right\|, i \leq p \leq n$ Let:

$$
\hat{\mathbf{S}}=\mathbf{U}^{*} \mathbf{S}
$$

Check that $\|\mathbf{S}-\mathbf{U U} \mathbf{*}\|=\|\mathbf{S}-\mathbf{U} \hat{\mathbf{S}}\|$ is small. If it's not, then the given image doesn't have a match in the database, so we can add it by updating \mathbf{U} and $\hat{\mathbf{T}}$.
Caveat: L_{2} distance is not a good measure of closeness between images. A lot of that difference could just be noise, difference in light, shades etc.
1.3. Problem with Eigenfaces. $\mathbf{S}=\mathbf{T T}^{*}$ is very large.

Typically $n \ll m$.
Solution 1: For $\mathbf{S}=\mathbf{T}^{*} \mathbf{T}$, let's computer it's EVD.
(1) Suppose $\mathbf{T}^{*} \mathbf{T} \mathbf{v}=\lambda \mathbf{v} \rightarrow \mathbf{T T}^{*} \mathbf{T} \mathbf{v}=\lambda \mathbf{T} \mathbf{v}$
(2) If we set $\mathbf{u}=\mathbf{T} \mathbf{v}$, we have a familiar system $\mathbf{S u}=\lambda \mathbf{u}$
(3) Let $\mathbf{v}_{\mathbf{j}}$ for $j \in[1 \cdots n]$ be eigenvectors of $\mathbf{T}^{*} \mathbf{t}$, normalized so that $\left\|\mathbf{v}_{\mathbf{j}}\right\|=1$.
(4) Set $\mathbf{u}_{\mathbf{j}}=\mathbf{T} \mathbf{v}_{\mathbf{j}}$, then $\mathbf{u}_{\mathbf{i}} \cdot \mathbf{u}_{\mathbf{j}}=\mathbf{u}_{\mathbf{i}} \mathbf{u}_{\mathbf{j}}=\mathbf{v}_{\mathbf{i}}{ }^{*} \mathbf{T}^{*} \mathbf{T} \mathbf{v}_{\mathbf{j}}=\lambda_{j} \mathbf{v}_{\mathbf{i}}{ }^{*} \mathbf{v}_{\mathbf{j}}=\left\{\begin{array}{l}\lambda_{j}, i=j \\ 0, i \neq j\end{array}\right.$

Solution 2: Compute SVD of T
(1) Suppose rank of \mathbf{T} is k. We know that $k \leq \min (m, n)$.
(2) $\mathbf{T}=\mathbf{U} \sum \mathbf{V}^{*}$
$\mathbf{T T}^{*}=\mathbf{U} \sum^{2} \mathbf{U}^{*}$
$\mathbf{T}^{*} \mathbf{T}=\mathbf{V} \sum^{2} \mathbf{V}^{*}$
(3) The left singular vectors of \mathbf{T} are the eigenfaces.

Observe that $\mathbf{u}_{\mathbf{j}}=\mathbf{T} \mathbf{v}_{\mathbf{j}}=\left(\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{\mathbf{i}} \mathbf{v}_{\mathbf{i}}^{*}\right) \mathbf{v}_{\mathbf{j}}=\sigma_{j} \mathbf{u}_{\mathbf{j}}$
(4) Rescale to get the left svecs of \mathbf{T}. In practice, we don't explicitly form $\mathbf{T}^{*} \mathbf{T}$. Instead, $\mathbf{T}^{*} \mathbf{T}=\sum_{i=1}^{n} \sigma_{i}^{2} \mathbf{u}_{\mathbf{i}} \mathbf{v}_{\mathbf{i}}{ }^{*}$

