Matrix factorizations and low rank approximation

Friday, March 11, 2016:

1. EIGENFACES

In this section, we learn intuition and math behind *Eigenfaces*, a technique to apply matrix **SVD** factorization to identify people's faces from the database.

1.1. Image manipulation. Let's assume we have n images of people's faces that are:

- Grey scale
- Same size $(m_1 \times m_2)$
- Same position/orientation of the face

For the method to work, let's reshape the matrix into one column vector that contains all of the image's information:

 $\begin{array}{rcl} \mathsf{Face_Image} & \to & \mathsf{t_1} \\ m_1 \times m_2 & & m_1 \ast m_2 \times 1 \end{array}$

After transforming each image into a vector, we can align them together to get the matrix:

$$\mathbf{T} = [\mathbf{t}_1, \mathbf{t}_2, \cdots, \mathbf{t}_n].$$

Usually, m >> n.

1.2. EVD - eigenvalue decomposition. In this method, we seek to compress T such that:

$$S = TT^*$$

 $S = UDU^*$

Then, let's pick a tolerance measure to pick k eigenvalues that reconstruct matrix **S** sufficiently accurately:

$$\frac{\lambda_1 + \lambda_2 + \dots + \lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_n} < 1 - tolerance$$

Therefore, we have a matrix:

$$\mathbf{S} \approx \mathbf{U} \quad \mathbf{D} \quad \mathbf{U}^*.$$
$$m \times m \qquad m \times k \quad k \times k \quad k \times m$$

Where, vectors u_i for $i \in [1 \dots k]$, are the "eigenfaces". They form an approximate basis for the columns of T. Therefore, our reconstruction of original matrix **T** is:

$$\mathbf{T} \approx \mathbf{U} \mathbf{U}^* \mathbf{T} = \mathbf{U} \hat{\mathbf{T}}$$

where,

$$\hat{\mathbf{T}} = \mathbf{U}^* \mathbf{T}$$

Useful applications.

- (1) Storage efficiency: store only matrices U and \hat{T} instead of T.
- (2) Face recognition: given a new face image encoded in a vector \mathbf{S} , we can attempt to find an image \mathbf{t}_i in our database that's closest to **S**.

Our job is to find $i = argmin||\mathbf{t}_{\mathbf{p}} - \mathbf{S}||, i \le p \le n$ Let:

 $\boldsymbol{\hat{S}} = \boldsymbol{U}^*\boldsymbol{S}$

Check that $||\mathbf{S} - \mathbf{U}\mathbf{U}^*\mathbf{S}|| = ||\mathbf{S} - \mathbf{U}\mathbf{\hat{S}}||$ is small. If it's not, then the given image doesn't have a match in the database, so we can add it by updating **U** and $\hat{\mathbf{T}}$.

Caveat: L_2 distance is not a good measure of closeness between images. A lot of that difference could just be noise, difference in light, shades etc.

1.3. Problem with Eigenfaces. $S = TT^*$ is very large.

Typically $n \ll m$.

Solution 1: For $S = T^*T$, let's computer it's EVD.

- (1) Suppose $\mathbf{T}^*\mathbf{T}\mathbf{v} = \lambda\mathbf{v} \to \mathbf{T}\mathbf{T}^*\mathbf{T}\mathbf{v} = \lambda\mathbf{T}\mathbf{v}$
- (2) If we set $\mathbf{u} = \mathbf{T}\mathbf{v}$, we have a familiar system $\mathbf{S}\mathbf{u} = \lambda \mathbf{u}$
- (3) Let \mathbf{v}_i for $j \in [1 \cdots n]$ be eigenvectors of $\mathbf{T}^* \mathbf{t}$, normalized so that $||\mathbf{v}_i|| = 1$.
- (4) Set $\mathbf{u}_{\mathbf{j}} = \mathbf{T}\mathbf{v}_{\mathbf{j}}$, then $\mathbf{u}_{\mathbf{i}} \cdot \mathbf{u}_{\mathbf{j}} = \mathbf{u}_{\mathbf{i}}^*\mathbf{u}_{\mathbf{j}} = \mathbf{v}_{\mathbf{i}}^*\mathbf{T}^*\mathbf{T}\mathbf{v}_{\mathbf{j}} = \lambda_j \mathbf{v}_{\mathbf{i}}^*\mathbf{v}_{\mathbf{j}} = \begin{cases} \lambda_j, i = j \\ 0, i \neq j \end{cases}$

Solution 2: Compute SVD of T

- (1) Suppose rank of **T** is k. We know that $k \leq \min(m, n)$.
- (2) $\mathbf{T} = \mathbf{U} \sum \mathbf{V}^*$
 $$\begin{split} \mathbf{T}\mathbf{T}^* &= \mathbf{U}\sum^2 \mathbf{U}^* \\ \mathbf{T}^*\mathbf{T} &= \mathbf{V}\sum^2 \mathbf{V}^* \end{split}$$
- (3) The left singular vectors of \mathbf{T} are the eigenfaces. Observe that $\mathbf{u}_{\mathbf{j}} = \mathbf{T}\mathbf{v}_{\mathbf{j}} = (\sum_{i=1}^{k} \sigma_i \mathbf{u}_i \mathbf{v}_i^*) \mathbf{v}_{\mathbf{j}} = \sigma_j \mathbf{u}_{\mathbf{j}}$ (4) Rescale to get the left svecs of **T**. In practice, we don't explicitly form $\mathbf{T}^*\mathbf{T}$. Instead, $\mathbf{T}^*\mathbf{T} = \sum_{i=1}^{n} \sigma_i^2 \mathbf{u}_i \mathbf{v}_i^*$