Principal Component Analysis

1. Statistical Properties

Before talking about Principal Component Analysis (PCA), let's first review some statistical properties in the form of three different examples.
1.1. Example 1: Height vs. Weight. In this example, we draw the heights and weights from a randomly selected population. In this case, the height and weights of each person are, in general, positively correlate. Selecting a random set of n samples, we can define \mathbf{X} as an $m \times n$ matrix where $m=2$, the number properties measured (in this case, height and weight). \mathbf{X} is then defined as:

$$
\mathbf{X}=\left[\begin{array}{llll}
w_{1} & w_{2} & \cdots & w_{n} \\
h_{1} & h_{2} & \cdots & h_{n}
\end{array}\right]
$$

The statistical properties of this data set are as follows:

Averages.

$$
\begin{array}{ll}
\bar{w}=\frac{1}{n} \sum_{i=1}^{n} w_{i} & \text { (Average Weight) } \\
\bar{h}=\frac{1}{n} \sum_{i=1}^{n} h_{i} & \text { (Average Height) }
\end{array}
$$

Variance.

$$
\begin{aligned}
& S_{w}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(w_{i}-\bar{w}\right)^{2} \\
& S_{h}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(h_{i}-\bar{h}\right)^{2}
\end{aligned}
$$

Covariance.

$$
S_{w h}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(w_{i}-\bar{w}\right)\left(h_{i}-\bar{h}\right)
$$

where $S_{w h}$ positive means w large is correlated with h large.
1.2. Example 2: Rainy Days in Summer vs. Ice Cream Sales. In this example, we look at the total sales of ice cream as well as the number of rainy days in a given summer. In this case, the sales of ice cream and number of rainy days are generally negatively correlated. We then define \mathbf{X} again as an $m \times n$ matrix where $m=2$ and n randomly selected samples. \mathbf{X} can then be defined as:

$$
\mathbf{X}=\left[\begin{array}{llll}
r_{1} & r_{2} & \cdots & r_{n} \\
s_{1} & s_{2} & \cdots & s_{n}
\end{array}\right]
$$

Covariance can again be defined as

$$
S_{r s}=\frac{1}{n-1} \sum_{i=1}^{n}\left(r_{i}-\bar{r}\right)\left(s_{i}-\bar{s}\right)
$$

and $S_{r s}$ is negative, representing the negative correlation between large r and large s.
Before we look at the 3rd example, let's briefly review the Multivariate Normal Distribution.
1.3. Review of Multivariate Normal Distribution. Let $\mathbf{x} \in \mathbb{R}^{2}$ be a random variable. We say that x has a multivariate normal distribution if for every vector \mathbf{u}, the scalar random variable ux has a normal (Gaussian) distribution. When this holds, the probability density function takes the form

$$
p(\mathbf{x})=\frac{1}{\sqrt{2 \pi}} \frac{1}{|\operatorname{det} \Sigma|} \exp \left(-\frac{1}{2}(\mathbf{x}-\mathbf{u})^{*} \boldsymbol{\Sigma}^{*}(\mathbf{x}-\mathbf{u})\right)
$$

where $\mathbf{u} \in \mathbb{R}^{2}$ is the mean and $\boldsymbol{\Sigma}$ is a $2 \times 2 \mathrm{pd}$ matrix known as the covariance matrix.
Let $\mathbf{Z}=\left[\begin{array}{llll}\mathbf{z}^{(1)} & \mathbf{z}^{(2)} & \cdots & \mathbf{z}^{(n)}\end{array}\right]$ be an $m \times n$ matrix of samples. Then the empirical mean is

$$
\mathbf{z}_{i}=\frac{1}{n} \sum_{j=1}^{n} z_{i j} \text { and } \mathbf{z}=\left[\begin{array}{c}
\bar{z}_{1} \\
\vdots \\
\bar{z}_{n}
\end{array}\right]
$$

Then \mathbf{z} is an estimate for $\boldsymbol{\mu}$, the equilibrium point. Set

$$
\begin{aligned}
& \mathbf{X}=\mathbf{Z}-\mathbf{z}\left[\begin{array}{llll}
1 & 1 & \cdots & 1
\end{array}\right] \\
& \mathbf{S}=\frac{1}{n-1} \mathbf{X X}^{*}
\end{aligned}
$$

We call S the empirical covariance matrix, which is an estimate for $\boldsymbol{\Sigma}$.
In PCA, make an assumption that the underlying data comes from a multivariate normal distribution.
1.4. Example 3: Moving Spring Mass System. In this example, we look at a mass spring system moving back and forth in a 3D system. At times $t_{1}, t_{2}, \ldots, t_{n}$, we record the position $\mathbf{z}^{(j)}$ of the mass to obtain a matrix \mathbf{Z} such that \mathbf{Z} is $m \times n, m=3$, and defined as:

$$
\mathbf{Z}=\left[\begin{array}{llll}
\mathbf{z}^{(1)} & \mathbf{z}^{(2)} & \cdots & \mathbf{z}^{(n)}
\end{array}\right]
$$

In other words,

$$
\mathbf{z}^{(j)}=\boldsymbol{\mu}+\cos \left(\omega t_{j}\right) A \mathbf{u}+\mathbf{n}^{(j)}
$$

where $\boldsymbol{\mu}$ is the equilibrium point, $\cos \left(\omega t_{j}\right) A \mathbf{u}$ represents the motion of the mass and $\mathbf{n}^{(j)}$ represents the noise. Set

$$
\mathbf{m}=\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right] \quad \text { and } \quad m_{j}=\frac{1}{n} \sum_{j=1}^{n} z_{i j}
$$

Then $\mathbf{m} \approx \boldsymbol{\mu}$. There are now 3 covariances and 3 variances. Subtract the average value from each row

$$
\mathbf{X}=\mathbf{Z}-\mathbf{m}\left[\begin{array}{cccc}
1 & 1 & \ldots & 1
\end{array}\right]=\left[\begin{array}{ccc}
z_{11}-m_{1} & z_{12}-m_{1} & \cdots \\
z_{21}-m_{2} & z_{22}-m_{2} & \cdots \\
z_{31}-m_{3} & \cdots & \ddots
\end{array}\right]
$$

We then define

$$
\begin{aligned}
\mathbf{S} & =\frac{1}{n-1} \mathbf{X X}^{*}=\left[\begin{array}{lll}
s_{11} & s_{12} & s_{13} \\
s_{21} & s_{22} & s_{23} \\
s_{31} & s_{32} & s_{33}
\end{array}\right] \\
s_{i j} & =\frac{1}{n-1} \sum_{k=1}^{n} x_{i k} x_{k j}=\frac{1}{n-1} \sum_{k=1}^{n}\left(z_{i k}-m_{i}\right)\left(z_{j k}-m_{j}\right)
\end{aligned}
$$

where \mathbf{S} is the Empirical Covariance Matrix of size 3×3.

References

