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Principal Component Analysis

1. STATISTICAL PROPERTIES

Before talking about Principal Component Analysis (PCA), let’s first review some statistical properties in the form
of three different examples.

1.1. Example 1: Height vs. Weight. In this example, we draw the heights and weights from a randomly selected
population. In this case, the height and weights of each person are, in general, positively correlate. Selecting a
random set of n samples, we can define X as an m × n matrix where m = 2, the number properties measured (in
this case, height and weight). X is then defined as:

X =

[
w1 w2 · · · wn

h1 h2 · · · hn

]
The statistical properties of this data set are as follows:

Averages.

w̄ =
1

n

n∑
i=1

wi (Average Weight)

h̄ =
1

n

n∑
i=1

hi (Average Height)

Variance.

S2
w =

1

n− 1

n∑
i=1

(wi − w̄)2

S2
h =

1

n− 1

n∑
i=1

(hi − h̄)2

Covariance.

S2
wh =

1

n− 1

n∑
i=1

(wi − w̄)(hi − h̄)

where Swh positive means w large is correlated with h large.

1.2. Example 2: Rainy Days in Summer vs. Ice Cream Sales. In this example, we look at the total sales of ice
cream as well as the number of rainy days in a given summer. In this case, the sales of ice cream and number of
rainy days are generally negatively correlated. We then define X again as an m × n matrix where m = 2 and n
randomly selected samples. X can then be defined as:

X =

[
r1 r2 · · · rn
s1 s2 · · · sn

]
Covariance can again be defined as

Srs =
1

n− 1

n∑
i=1

(ri − r̄)(si − s̄)

and Srs is negative, representing the negative correlation between large r and large s.

Before we look at the 3rd example, let’s briefly review the Multivariate Normal Distribution.
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1.3. Review of Multivariate Normal Distribution. Let x ∈ R2 be a random variable. We say that x has a
multivariate normal distribution if for every vector u, the scalar random variable ux has a normal (Gaussian)
distribution. When this holds, the probability density function takes the form

p(x) =
1√
2π

1

|det Σ|
exp(−1

2
(x− u)∗Σ∗(x− u))

where u ∈ R2 is the mean and Σ is a 2× 2 pd matrix known as the covariance matrix.

Let Z =
[

z(1) z(2) · · · z(n)
]

be an m× n matrix of samples. Then the empirical mean is

zi =
1

n

n∑
j=1

zij and z =

 z̄1
...
z̄n


Then z is an estimate for µ, the equilibrium point. Set

X = Z− z
[

1 1 · · · 1
]

1×n

S =
1

n− 1
XX∗

We call S the empirical covariance matrix, which is an estimate for Σ.

In PCA, make an assumption that the underlying data comes from a multivariate normal distribution.

1.4. Example 3: Moving Spring Mass System. In this example, we look at a mass spring system moving back
and forth in a 3D system. At times t1, t2, . . . , tn, we record the position z(j) of the mass to obtain a matrix Z such
that Z is m× n, m = 3, and defined as:

Z =
[

z(1) z(2) · · · z(n)
]

In other words,
z(j) = µ + cos(ωtj)Au + n(j)

where µ is the equilibrium point, cos(ωtj)Au represents the motion of the mass and n(j) represents the noise. Set

m =

 m1

m2

m3

 and mj =
1

n

n∑
j=1

zij

Then m ≈ µ. There are now 3 covariances and 3 variances. Subtract the average value from each row

X = Z−m
[

1 1 · · · 1
]

1×n

=

 z11 −m1 z12 −m1 · · ·
z21 −m2 z22 −m2 · · ·

z31 −m3 · · · . . .


We then define

S =
1

n− 1
XX∗ =

 s11 s12 s13
s21 s22 s23
s31 s32 s33


sij =

1

n− 1

n∑
k=1

xikxkj =
1

n− 1

n∑
k=1

(zik −mi)(zjk −mj)

where S is the Empirical Covariance Matrix of size 3× 3.
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