Class notes for Monday, Februray 29th

Recall: Randomized ID

(1) Draw gaussian G = randn(n, k + p)(2) $Y = AG \sim mnk$ (3) $[I_s, X] = ID_row(Y, k) \sim mk^2$ Then $A \approx XA(I_s, :)$

Observation (1) : It is easy to accelerate to complexity $mn \log(k)$ by replacing the gaussian random matrix by an SRFT

Observation (2): We can easily convert the ID to an SVD

$$A_{m \times n} \approx X_{m \times k} A_{k \times n}(I_s, :)$$

X = QR

$$\Rightarrow A \approx Q_{m \times k} (RA(I_s, :))_{k \times n}$$

$$= Q_{m \times k} \hat{U}_{k \times k} D_{k \times k} V_{k \times n}^* = U_{m \times k} D_{k \times k} V_{k \times n}^*$$

Randomized SVD with complexity $mn \log(k)$

(1) Draw SRFT ω of size $n \times (k + p)$ (2) $Y = A\omega \rightarrow$ evaluate dwith subFFT $(mn \log(k))$ (3) $[I_s, X] = ID_r ow(Y, k)$ (4) [Q, R] = qr(Y, 0)(5) $[\hat{U}, D, V] = svd(RA(I_s, :), 'econ')$ (6) $U = Q\hat{U}$ Then

$$A \approx UDV^*$$

The CUR Decomposition

Let A be an $m \times n$ matrix of exact rank k. Then A admits a factorization

$$A = C_{m \times k} U_{k \times k} R_{k \times n}$$

where

 $C = A(:, J_s)$ is a set of k columns of A $R = A(I_s, :)$ is a set of k ros of A The CUR and the doublesided ID are "siblings" We have (1) $A = XA_sZ$ where $A_s = (I_s, J_s)$ Restrict (1) to columns in J_s

$$A(:,J_s) = XA_sZ(:,J_s)$$

$$\Rightarrow C = XA_S$$
 (2)

Analoguly: $R = A_s Z$ (3) (1) $\Leftrightarrow A = (XA_s)A_s^{-1}(A_s Z)$ Set $U = A(I_s, J_s)^{-1}$ to obtain

A = CUR

Algorithm: Computing CUR from ID suppose I_s, J_s have been determined. Then set

$$U = A(I_s, J_s)$$
$$C = A(:, J_s)$$
$$R = A(I_s, :)$$

Fundamental Problem of CUR:

 $A(I_s, J_s)$ is typically ill-conditioned: example

 $A = \left[\begin{array}{c} I_2 \\ S \end{array} \right] \left[\begin{array}{cc} 1 & c \\ 0 & \beta \end{array} \right] \left[\begin{array}{cc} I_2 & T \end{array} \right]$

(A is of rank 2)

$$I_s = I_r = [1, 2]$$
 (*)

$$= \begin{bmatrix} A_s & A_s T \\ SA_s & SA_s T \end{bmatrix}$$

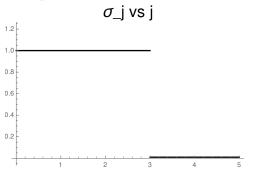
Then the CUR of A is

$$A = A(:, [1, 2]) \begin{pmatrix} 1 & 0 \\ 1 & \frac{1}{\beta} \end{pmatrix} A([1, 2], :) \quad (**)$$

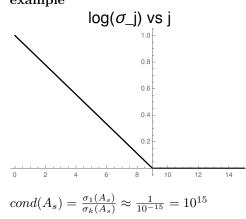
Suppose β is small, then the factorization in (*) is perfectly benign, but (**) is numerically unstable (large numbers must combine to produce small numbers)

Let us consider the case of a matrix of appropriate rank **k**

example

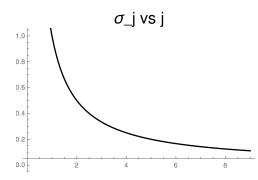


The CUR will have $cond(A_s) \approx \frac{\sigma_1}{\sigma_k}$ which is moderate (something) often has $\sigma_j(A) \approx \sigma_j(A_s)$, $i \leq j \leq k \rightarrow$ unusual! example



CUR will lead to very bad errors (due to floating point artimetic). You cannot, roughly speaking, get errors better then $\sqrt{\epsilon_{machine}} \approx 10^{-8}$

example



Condition number of A_s will be $10^1 \mbox{ or } 10^2$, which is not problematic

How do you compute CUR when A has approximate rank k ?

(1) First identify I_s, J_s (use gram-schmidt, use randomized sampling + GS, randomized sampling via "leverage scores")

(2)
$$C = A(:, J_s)$$
 $R = A(I_s, :)$

we now have $A \approx C^{\dagger} A R^{\dagger} R$

(3) Set $U = C^{\dagger}AR^{\dagger}$ (this is probably the optimal U)