Class notes for Monday, Februray 29th

Recall: Randomized ID
(1) Draw gaussian $G=\operatorname{randn}(n, k+p)$
(2) $Y=A G \quad \sim m n k$
(3) $\left[I_{s}, X\right]=I D _r o w(Y, k) \sim m k^{2}$

Then $A \approx X A\left(I_{s},:\right)$
Observation (1) : It is easy to accelerate to complexity $m n \log (k)$ by replacing the gaussian random matrix by an SRFT

Observation (2): We can eaisly convert the ID to an SVD

$$
\begin{gathered}
A_{m \times n} \approx X_{m \times k} A_{k \times n}\left(I_{s},:\right) \\
X=Q R \\
\Rightarrow A \approx Q_{m \times k}\left(R A\left(I_{s},:\right)\right)_{k \times n} \\
=Q_{m \times k} \hat{U}_{k \times k} D_{k \times k} V_{k \times n}^{*}=U_{m \times k} D_{k \times k} V_{k \times n}^{*}
\end{gathered}
$$

Randomized SVD with complexity $m n \log (k)$
(1) Draw SRFT ω of size $n \times(k+p)$
(2) $Y=A \omega \rightarrow$ evaluate dwith subFFT $(m n \log (k))$
(3) $\left[I_{s}, X\right]=I D_{r}$ ow (Y, k)
(4) $[Q, R]=q r(Y, 0)$
(5) $[\hat{U}, D, V]=\operatorname{svd}\left(R A\left(I_{s},:\right),{ }^{\prime}\right.$ econ $\left.^{\prime}\right)$
(6) $U=Q \hat{U}$

Then

$$
A \approx U D V^{*}
$$

The CUR Decomposition
Let A be an $m \times n$ matrix of exact rank k. Then A admits a factorization

$$
A=C_{m \times k} U_{k \times k} R_{k \times n}
$$

where
$C=A\left(:, J_{s}\right)$ is a set of k columns of A
$R=A\left(I_{s},:\right)$ is a set of k ros of A
The CUR and the doublesided ID are "siblings"
We have (1) $A=X A_{s} Z$ where $A_{s}=\left(I_{s}, J_{s}\right)$
Restrict (1) to coluns in J_{s}

$$
\begin{align*}
& A\left(:, J_{s}\right)=X A_{s} Z\left(:, J_{s}\right) \\
& \Rightarrow C=X A_{S} \tag{2}
\end{align*}
$$

Analoguly: $R=A_{s} Z$ (3)
(1) $\Leftrightarrow A=\left(X A_{s}\right) A_{s}^{-1}\left(A_{s} Z\right)$

Set $U=A\left(I_{s}, J_{s}\right)^{-1}$ to obtain

$$
A=C U R
$$

Algorithm: Computing CUR from ID suppose I_{s}, J_{s} have been determined. Then set

$$
\begin{gathered}
U=A\left(I_{s}, J_{s}\right) \\
C=A\left(:, J_{s}\right) \\
R=A\left(I_{s},:\right)
\end{gathered}
$$

Fundamental Problem of CUR:
$A\left(I_{s}, J_{s}\right)$ is typically ill-conditioned:
example

$$
A=\left[\begin{array}{c}
I_{2} \\
S
\end{array}\right]\left[\begin{array}{ll}
1 & c \\
0 & \beta
\end{array}\right]\left[\begin{array}{ll}
I_{2} & T
\end{array}\right]
$$

(A is of rank 2)

$$
I_{s}=I_{r}=[1,2] \quad(*)
$$

$$
=\left[\begin{array}{cc}
A_{s} & A_{s} T \\
S A_{s} & S A_{s} T
\end{array}\right]
$$

Then the CUR of A is

$$
A=A(:,[1,2])\left(\begin{array}{cc}
1 & 0 \\
1 & \frac{1}{\beta}
\end{array}\right) A([1,2],:) \quad(* *)
$$

Suppose β is small, then the factorization in $\left(^{*}\right)$ is perfectly benign, but $\left({ }^{* *}\right)$ is numerically unstable (large numbers must combine to produce small numbers)

Let us consider the case of a matrix of appropriate rank k
example
$\sigma_{-} \mathrm{j} v \mathrm{j}$

The CUR will have $\operatorname{cond}\left(A_{s}\right) \approx \frac{\sigma_{1}}{\sigma_{k}}$ which is moderate
(something) often has $\sigma_{j}(A) \approx \sigma_{j}\left(A_{s}\right), \quad i \leq j \leq k \rightarrow$ unusual!
example

$\operatorname{cond}\left(A_{s}\right)=\frac{\sigma_{1}\left(A_{s}\right)}{\sigma_{k}\left(A_{s}\right)} \approx \frac{1}{10^{-15}}=10^{15}$
CUR will lead to very bad errors (due to floating point artimetic). You cannot, roughly speaking, get errors better then $\sqrt{\epsilon_{\text {machine }}} \approx 10^{-8}$
example

Condition number of A_{s} will be 10^{1} or 10^{2}, which is not problematic

How do you compute CUR when A has approximate rank k ?
(1) First identify I_{s}, J_{s} (use gram-schmidt, use randomized sampling + GS, randomized sampling via "leverage scores")
(2) $C=A\left(:, J_{s}\right) \quad R=A\left(I_{s},:\right)$
we now have $A \approx C^{\dagger} A R^{\dagger} R$
(3) Set $U=C^{\dagger} A R^{\dagger}$ (this is probably the optimal U)

