The Interpolative Decomposition (ID)

Let **A** be an $m \times n$ matrix of exact rank k. Then **A** admits three "structure preserving" factorizations that sacrifice orthonormality to gain faithfulness to the original data:

 $= \mathop{\mathbf{X}}_{m\times k} \mathop{\mathbf{R}}_{k\times n}$

 $= \mathop{\mathbf{X}}_{m \times k} \mathop{\mathbf{A}_{\mathrm{skel}}}_{k \times k} \mathop{\mathbf{Z}}_{k \times n}$

 $\mathbf{A}_{m \times n} = \mathbf{C}_{m \times k} \mathbf{Z}_{k \times n}$

(Column ID)

(Row ID)

(Double-Sided ID)

where

- I_s and J_s are index vectors marking the chosen rows and columns, respectively.
- $\mathbf{C} = \mathbf{A}(:, J_s)$ holds k columns of \mathbf{A} .
- **Z** contains a $k \times k$ identity matrix, $\mathbf{Z}(:, J_s) = \mathbf{I}_k$ and $\max |\mathbf{Z}(i, j)| \le 1$.
- $\mathbf{R} = \mathbf{A}(I_s, :)$ is a set of k rows of \mathbf{A} .
- X contains a $k \times k$ identity matrix, $X(I_s, :) = I_k$ and $\max|X_i, j| \le 1$.
- $\mathbf{A}_{\text{skel}} = \mathbf{A}(I_s, J_s)$

1. ADVANTAGES/DISADVANTAGES OF ID

1.1. Advantages.

- If **A** is sparse, then so are **C** and **R**.
- If **A** is non-negative, then so are **C** and **R**, etc.
- Data Interpretation
- Storage Efficient (Huge saving for sparse matrices, small saving for dense matrices)

1.2. Disadvantages.

- Your basis is no longer orthonormal.
- For matrices of approximate rank k, the ID can be less optimal than the SVD (approximation error is generally the same as the QR).

2. ID AND THE COLUMN-PIVOTED QR ARE CLOSELY RELATED

2.1. Column/Row ID. Let A be $m \times n$ and rank(A) = $k < \min(m, n)$. Lets compute the CPQR of A:

(1)
$$\mathbf{A}_{m \times n}(:, J) = \mathbf{Q}_{m \times k} \mathbf{R}_{k \times n}$$

Partition $J = \begin{bmatrix} J_s & J_r \end{bmatrix}$ where s stand for the skeleton and r stands for the residual. J_s points to the k pivot vectors that were chosen and $\mathbf{R} = \begin{bmatrix} \mathbf{R}_{11} & \mathbf{R}_{12} \\ k \times k & k \times (n-k) \end{bmatrix}$. We rewrite (1) as:

$$[\mathbf{A}(:, J_s) \ \mathbf{A}(:, J_r)] = [\mathbf{Q}_1 \mathbf{R}_{11} \ \mathbf{Q}_1 \mathbf{R}_{12}]$$

We now see that

$$A(: J_s) = Q_1 R_{11} =: C$$

$$A(:, J_r) = Q_1 R_{12} = Q_1 R_{11} R_{11}^{-1} R_{12} = CT$$

where $\mathbf{T} := \mathbf{R}_{11}^{-1} \mathbf{R}_{12}$ Write (1) as $\mathbf{AP} = \mathbf{QR}$ and then we get:

$$\mathbf{A} = \mathbf{Q}_1 \mathbf{R} \mathbf{P}^* = \mathbf{Q}_1 \begin{bmatrix} \mathbf{R}_{11} & \mathbf{R}_{12} \end{bmatrix} \mathbf{P}^*$$
$$= \mathbf{Q} \mathbf{R}_{11} \begin{bmatrix} \mathbf{I}_k \mathbf{R}_{11}^{-1} & \mathbf{R}_{12} \end{bmatrix} \mathbf{P}^* = \mathbf{C} \begin{bmatrix} \mathbf{I}_k & \mathbf{T} \end{bmatrix} \mathbf{P}^* = \mathbf{CZ}$$

where $\mathbf{Z} = [\mathbf{I}_k \ \mathbf{T}] \mathbf{P}^*$.

Now consider a matrix of approximate rank k. Then:

$$\mathbf{AP} = \begin{bmatrix} \mathbf{Q}_1 & \mathbf{Q}_2 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{11} & \mathbf{R}_{12} \\ 0 & \mathbf{R}_{22} \end{bmatrix}$$
$$\Rightarrow \mathbf{A} = \mathbf{Q}_1 \begin{bmatrix} \mathbf{R}_{11} & \mathbf{R}_{12} \end{bmatrix} \mathbf{P}^* + \mathbf{Q}_2 \begin{bmatrix} 0 & \mathbf{R}_{22} \end{bmatrix} \mathbf{P}^*$$

The first term can be written as:

$$\mathbf{Q}_{1} \begin{bmatrix} \mathbf{R}_{11} & \mathbf{R}_{12} \end{bmatrix} \mathbf{P}^{*} = \mathbf{Q}_{1} \mathbf{R}_{11} \begin{bmatrix} \mathbf{I} & \mathbf{R}_{11}^{-1} \mathbf{R}_{12} \end{bmatrix} \mathbf{P}^{*} = \mathbf{C} \mathbf{Z}$$

where $\mathbf{C} = \mathbf{Q}_1 \mathbf{R}_{11}$ and $\mathbf{Z} = \begin{bmatrix} \mathbf{I} & \mathbf{R}_{11}^{-1} \mathbf{R}_{12} \end{bmatrix} \mathbf{P}^*$ while the second term is the remainder term. Then:

$$\mathbf{A} - \mathbf{C}\mathbf{Z} = \mathbf{Q}_2 \begin{bmatrix} 0 & \mathbf{R}_{12} \end{bmatrix} \mathbf{P}^*$$

which produces exactly the same error as in the truncated QR. In practice, just take k steps of the Gram-Schmidt. Then:

$$\mathbf{AP} = \mathbf{Q}_1 \begin{bmatrix} \mathbf{R}_{11} & \mathbf{R}_{12} \end{bmatrix} + \begin{bmatrix} 0 & \mathbf{B} \\ k & n-k \end{bmatrix}$$

Stop when $||\mathbf{B}||_{Fro} \leq \epsilon$. Note that $||\mathbf{B}|| = ||\mathbf{Q}_2\mathbf{R}_{22}\tilde{\mathbf{P}}|| = ||\mathbf{R}_{22}||$.

To obtain the row ID, perform the Gram-Schmidt on the <u>rows</u> of **A** instead of the columns (same as doing the QR factorization of \mathbf{A}^*).

2.2. Double-Sided ID.

Step 1: Perform the column ID, $A \approx CZ$.

Step 2: Execute the row ID on C (which is much smaller than A)! Since $C = XC(I_s, :)$ is an exact factorization and using $C = A(:, J_s)$, we have $C(I_s, :) = A(I_s, J_s)$. So:

$$\mathbf{A} \approx \mathbf{C}\mathbf{Z} = \mathbf{X}\mathbf{C}(I_s, :)\mathbf{Z} = \mathbf{X}\mathbf{A}(I_s, J_s)\mathbf{Z}$$

where $\mathbf{A}(I_s, J_s) = \mathbf{A}_{\text{skel}}$.

You can also perform the Double-Sided ID using the row ID first (conduct the Gram-Schmidt on the smaller dimension for a more optimal solution).

2

References