The Interpolative Decomposition (ID)

Let \mathbf{A} be an $m \times n$ matrix of exact rank k. Then \mathbf{A} admits three "structure preserving" factorizations that sacrifice orthonormality to gain faithfulness to the original data:
(Column ID)
(Row ID)
(Double-Sided ID)

$$
\begin{aligned}
\underset{m \times n}{\mathbf{A}} & =\underset{m \times k}{\mathbf{C}} \underset{k \times n}{\mathbf{Z}} \\
& =\underset{m \times k}{\mathbf{X}} \underset{k \times n}{\mathbf{R}} \\
& =\underset{m \times k}{\mathbf{X}} \mathbf{A}_{k \times k} \underset{k \times k}{ } \underset{k \times n}{\mathbf{Z}}
\end{aligned}
$$

where

- I_{s} and J_{s} are index vectors marking the chosen rows and columns, respectively.
- $\mathbf{C}=\mathbf{A}\left(:, J_{s}\right)$ holds k columns of \mathbf{A}.
- \mathbf{Z} contains a $k \times k$ identity matrix, $\mathbf{Z}\left(:, J_{s}\right)=\mathbf{I}_{k}$ and $\max _{i, j}|\mathbf{Z}(i, j)| \leq 1$.
- $\mathbf{R}=\mathbf{A}\left(I_{s},:\right)$ is a set of k rows of \mathbf{A}.
- \mathbf{X} contains a $k \times k$ identity matrix, $\mathbf{X}\left(I_{s},:\right)=\mathbf{I}_{k}$ and $\max _{i, j}|\mathbf{X} i, j| \leq 1$.
- $\mathbf{A}_{\text {skel }}=\mathbf{A}\left(I_{s}, J_{s}\right)$

1. Advantages/Disadvantages of ID

1.1. Advantages.

- If \mathbf{A} is sparse, then so are \mathbf{C} and \mathbf{R}.
- If \mathbf{A} is non-negative, then so are \mathbf{C} and \mathbf{R}, etc.
- Data Interpretation
- Storage Efficient (Huge saving for sparse matrices, small saving for dense matrices)

1.2. Disadvantages.

- Your basis is no longer orthonormal.
- For matrices of approximate rank k, the ID can be less optimal than the SVD (approximation error is generally the same as the QR).

2. ID and the Column-Pivoted QR Are Closely Related

2.1. Column/Row ID. Let \mathbf{A} be $m \times n$ and $\operatorname{rank}(\mathbf{A})=k<\min (m, n)$. Lets compute the CPQR of \mathbf{A} :

$$
\begin{equation*}
\underset{m \times n}{\mathbf{A}}(:, J)=\underset{m \times k}{\mathbf{Q}} \underset{k \times n}{\mathbf{R}} \tag{1}
\end{equation*}
$$

Partition $J=\left[\begin{array}{cc}J_{s} & J_{r} \\ k & n-k\end{array}\right]$ where s stand for the skeleton and r stands for the residual. J_{s} points to the k pivot vectors that were chosen and $\mathbf{R}=\left[\begin{array}{ll}\mathbf{R}_{11} & \underset{k \times(n-k)}{\mathbf{R}_{12}}\end{array}\right]$. We rewrite (1) as:

$$
\left[\mathbf{A}\left(:, J_{s}\right) \quad \mathbf{A}\left(:, J_{r}\right)\right]=\left[\begin{array}{ll}
\mathbf{Q}_{1} \mathbf{R}_{11} & \mathbf{Q}_{1} \mathbf{R}_{12}
\end{array}\right] .
$$

We now see that

$$
\begin{aligned}
& \mathbf{A}\left(: J_{s}\right)=\mathbf{Q}_{1} \mathbf{R}_{11}=: \mathbf{C} \\
& \mathbf{A}\left(:, J_{r}\right)=\mathbf{Q}_{1} \mathbf{R}_{12}=\mathbf{Q}_{1} \mathbf{R}_{11} \mathbf{R}_{11}^{-1} \mathbf{R}_{12}=\mathbf{C T}
\end{aligned}
$$

where $\mathbf{T}:=\mathbf{R}_{11}^{-1} \mathbf{R}_{12}$ Write (1) as $\mathbf{A P}=\mathbf{Q R}$ and then we get:

$$
\begin{aligned}
& \mathbf{A}=\mathbf{Q}_{1} \mathbf{R P}^{*}=\mathbf{Q}_{1}\left[\begin{array}{ll}
\mathbf{R}_{11} & \mathbf{R}_{12}
\end{array}\right] \mathbf{P}^{*} \\
&=\mathbf{Q R}_{11}\left[\begin{array}{ll}
\mathbf{I}_{k} \mathbf{R}_{11}^{-1} & \mathbf{R}_{12}
\end{array}\right] \mathbf{P}^{*}=\mathbf{C}\left[\begin{array}{ll}
\mathbf{I}_{k} & \mathbf{T}
\end{array}\right] \mathbf{P}^{*}=\mathbf{C Z} \\
& 1
\end{aligned}
$$

where $\mathbf{Z}=\left[\mathbf{I}_{k} \mathbf{T}\right] \mathbf{P}^{*}$.
Now consider a matrix of approximate rank k. Then:

$$
\begin{aligned}
\mathbf{A} \mathbf{P} & =\left[\begin{array}{ll}
\mathbf{Q}_{1} & \mathbf{Q}_{2}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R}_{11} & \mathbf{R}_{12} \\
0 & \mathbf{R}_{22}
\end{array}\right] \\
\Rightarrow \mathbf{A} & =\mathbf{Q}_{1}\left[\begin{array}{ll}
\mathbf{R}_{11} & \mathbf{R}_{12}
\end{array}\right] \mathbf{P}^{*}+\mathbf{Q}_{2}\left[\begin{array}{ll}
0 & \mathbf{R}_{22}
\end{array}\right] \mathbf{P}^{*}
\end{aligned}
$$

The first term can be written as:

$$
\mathbf{Q}_{1}\left[\begin{array}{ll}
\mathbf{R}_{11} & \mathbf{R}_{12}
\end{array}\right] \mathbf{P}^{*}=\mathbf{Q}_{1} \mathbf{R}_{11}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{R}_{11}^{-1} \mathbf{R}_{12}
\end{array}\right] \mathbf{P}^{*}=\mathbf{C Z}
$$

where $\mathbf{C}=\mathbf{Q}_{1} \mathbf{R}_{11}$ and $\mathbf{Z}=\left[\begin{array}{ll}\mathbf{I} & \mathbf{R}_{11}^{-1} \mathbf{R}_{12}\end{array}\right] \mathbf{P}^{*}$ while the second term is the remainder term. Then:

$$
\mathbf{A}-\mathbf{C Z}=\mathbf{Q}_{2}\left[\begin{array}{ll}
0 & \mathbf{R}_{12}
\end{array}\right] \mathbf{P}^{*}
$$

which produces exactly the same error as in the truncated QR . In practice, just take k steps of the Gram-Schmidt. Then:

$$
\mathbf{A} \mathbf{P}=\mathbf{Q}_{1}\left[\begin{array}{ll}
\mathbf{R}_{11} & \mathbf{R}_{12}
\end{array}\right]+\left[\begin{array}{cc}
0 & \mathbf{B}_{k}
\end{array}\right]
$$

Stop when $\|\mathbf{B}\| \|_{F r o} \leq \epsilon$. Note that $\|\mathbf{B}\|=\left\|\mathbf{Q}_{2} \mathbf{R}_{22} \tilde{\mathbf{P}}\right\|=\left\|\mathbf{R}_{22}\right\|$.
To obtain the row ID, perform the Gram-Schmidt on the rows of \mathbf{A} instead of the columns (same as doing the QR factorization of \mathbf{A}^{*}).

2.2. Double-Sided ID.

Step 1: Perform the column ID, A $\approx \mathbf{C Z}$.
Step 2: Execute the row ID on \mathbf{C} (which is much smaller than \mathbf{A})! Since $\mathbf{C}=\mathbf{X C}\left(I_{s},:\right.$) is an exact factorization and using $\mathbf{C}=\mathbf{A}\left(:, J_{s}\right)$, we have $\mathbf{C}\left(I_{s},:\right)=\mathbf{A}\left(I_{s}, J_{s}\right)$. So:

$$
\mathbf{A} \approx \mathbf{C Z}=\mathbf{X C}\left(I_{s},:\right) \mathbf{Z}=\mathbf{X A}\left(I_{s}, J_{s}\right) \mathbf{Z}
$$

where $\mathbf{A}\left(I_{s}, J_{s}\right)=\mathbf{A}_{\text {skel }}$.
You can also perform the Double-Sided ID using the row ID first (conduct the Gram-Schmidt on the smaller dimension for a more optimal solution).

References

