Class Notes from Monday, February 22nd

Blocked Lanczos Procedure

Recall: BLAS 3 operations great

BLAS 2 operations good but much slower than BLAS3 $\,$

Let b be a block size

Let A be a $n \times n$ and hermition matrix

Let Q be an $n \times b$ given, ON matrix

we seek matrices

$$Q = \begin{bmatrix} | & | & | \\ q_1 & q_2 & \dots \\ | & | & | \end{bmatrix} \quad \Leftarrow unitary$$
$$T = \begin{bmatrix} t_{11} & t_{12} & 0 & \dots \\ t_{21} & t_{22} & t_{23} & \dots \\ t_{33} & \dots & \ddots \\ 0 & \dots & \ddots \end{bmatrix} \quad \Leftarrow block \ tridiagonal \ each \ block \ size \ b \times b$$

We want $A = QTQ^*$ $\iff AQ = QT$ (1) First block col of (1) : $AQ_1 = Q_1 T_{11} + Q_2 T_{21}$ multiply by $Q_1^* \rightarrow Q_1^*AQ_1 = Q_1^*Q_1 T_{11} + Q_1^*Q_2 T_{21}$ $Q_1^*AQ_1 = I_b T_{11} + 0 T_2 1$

$$T_{11} = Q_1^* A Q_1$$

$$\Rightarrow \quad Q_2 T_{21} = AQ_1 - Q_1 T_{11}$$
$$[Q_2, T_{21}] = qr(AQ_1 - Q_1 T_{11}) \Leftarrow \quad non - pivoted$$
and $T_{21}^* = T_{12}$

Second block of (2): $AQ_2 = Q_1T_{12} + Q_2T_{22} + Q_3T_{32}$ $T_{22} = Q_2^*AQ_2$ $Q_3T_{32} = AQ_2 - Q_1T_{12} - Q_2T_{22} \quad \leftarrow QR \ factorization$

Convergence of Lanczos

Set $T_k = T(1:k, 1:k)$. Let b be the starting vector of Lanczos iteration $q_1 = \frac{b}{\|b\|}$ <u>idea:</u> evals of T_k converge to k evals of A (largest ones first) Set $p^*(\lambda) = det(T_k - \lambda I)$ so p^* is the characteristic polynomial of T_k

<u>Recall</u>: λ is an eval of $T_k \Leftrightarrow p^*(\lambda) = 0$

Set $P_k^\infty = \operatorname{set}$ of "monic" polynomials of degree **k**

$$\left\{ p: p(z) = z^k + C_{k-1} z^{k-1} + \dots + C_1 z + C_0 \right\}$$

Then $\|p^*(A)b\| \le \|p(A)b\| \forall p \in P_k^{\infty}$

Consider the evd of A, $A = UDU^*$

then
$$A^i = UD^iU^*$$

so for any polynomial p we have $p(A) = Up(D)U^*$

$$||p(A)b|| = ||Up(D)U^*b|| = ||p(D)b'||, \quad b' = U^*b$$

$$= \left[\left[\begin{array}{c} p(\lambda_1)b_1' \\ p(\lambda_1)b_2' \\ \vdots \\ \vdots \\ \vdots \\ p(\lambda_n)b_n' \end{array} \right] \right]$$

=

We expect the zeros of p^* to "hit" the dominant evals of A

Arnoldi Procedure

Let A be an $n\times n$ general matrix

Let b be a starting vector and set $q_1 = \frac{b}{\|b\|}$ Set $K_k(A, b) = span \{b, Ab, A^2b, ..., A^{k-1}b\}$ We will build an ON set $\{q_1\}_{j=1}^n$ such that $\{q_j\}_{j=1}^n$ is an ON basis for $K_k(A, b)$ We formalize this as seeking a fatorization $A = QHQ^*$

where $Q = \begin{bmatrix} | & | & | \\ q_1 & q_2 & \dots & q_n \\ | & | & | \end{bmatrix}$ is unitary

and where H is a Hessenberg matrix

$$H = \begin{bmatrix} h_{11} & h_{12} & h_{13} & _ \\ h_{21} & h_{22} & h_{23} & _ \\ 0 & h_{32} & h_{33} & _ \\ | & 0 & \\ & & 0 \end{bmatrix}$$

(we cannot get a tridiagonal since A is not hermition)

The kth Step:

$$Aq_{k} = \sum_{i=1}^{k} q_{i}h_{ik} + q_{k+1}h_{k+1,k}$$

$$\rightarrow h_{ik} = q_{i}^{*}Aq_{k} \quad \text{for } i = 1, 2, ..., k$$

$$\rightarrow h_{k+1,k}q_{k+1} = Aq_{k} - \sum_{i=1}^{k} h_{ik} - q_{i} \rightarrow h_{k+1,k} \text{ and } q_{k+1}$$

Some comments: in its "pure" form Arnoldi's procedure is more work then Lanczos

– It requires more memory since all q vectors must be stored

- Stabalized Lanczos also requires a lot of storage
- Restarting is a common tool to deal with both memory problems and operation cos of Arnoldi
- Arnoldi converges more slowly, and the theory is less sharp