Class Notes from Monday, February 22nd

Blocked Lanczos Procedure

Recall: BLAS 3 operations great
BLAS 2 operations good but much slower than BLAS3

Let b be a block size
Let A be a $n \times n$ and hermition matrix
Let Q be an $n \times b$ given, ON matrix
we seek matrices

$$
\begin{gathered}
Q=\left[\begin{array}{ccc}
\mid & \mid & \\
q_{1} & q_{2} & \ldots \\
\mid & \mid
\end{array}\right] \Leftarrow \text { unitary } \\
T=\left[\begin{array}{cccc}
t_{11} & t_{12} & 0 & \ldots \\
t_{21} & t_{22} & t_{23} & \ldots \\
t_{33} & \ldots & . & \\
0 & \ldots & & .
\end{array}\right] \Leftarrow \text { block tridiagonal each block size } b \times b
\end{gathered}
$$

We want $A=Q T Q^{*}$
$\Longleftrightarrow A Q=Q T$ (1)
First block col of (1) : $A Q_{1}=Q_{1} T_{11}+Q_{2} T_{21}$
multiyply by $Q_{1}^{*} \rightarrow Q_{1}^{*} A Q_{1}=Q_{1}^{*} Q_{1} T_{11}+Q_{1}^{*} Q_{2} T_{21}$

$$
Q_{1}^{*} A Q_{1}=I_{b} T_{11}+0 T_{2} 1
$$

$$
T_{11}=Q_{1}^{*} A Q_{1}
$$

$\Rightarrow \quad Q_{2} T_{21}=A Q_{1}-Q_{1} T_{11}$
$\left[Q_{2}, T_{21}\right]=q r\left(A Q_{1}-Q_{1} T_{11}\right) \Leftarrow$ non - pivoted
and $T_{21}^{*}=T_{12}$

Second block of (2):
$A Q_{2}=Q_{1} T_{12}+Q_{2} T_{22}+Q_{3} T_{32}$
$T_{22}=Q_{2}^{*} A Q_{2}$
$Q_{3} T_{32}=A Q_{2}-Q_{1} T_{12}-Q_{2} T_{22} \leftarrow Q R$ factorization

Convergence of Lanczos

Set $T_{k}=T(1: k, 1: k)$. Let b be the starting vector of Lanczos iteration $q_{1}=\frac{b}{\|b\|}$
idea: evals of T_{k} converge to k evals of A (largest ones first)
Set $p^{*}(\lambda)=\operatorname{det}\left(T_{k}-\lambda I\right)$ so p^{*} is the characteristic polynomial of T_{k}

Recall: λ is an eval of $T_{k} \Leftrightarrow p^{*}(\lambda)=0$

Set $P_{k}^{\infty}=$ set of "monic" polynomials of degree k

$$
\left\{p: p(z)=z^{k}+C_{k-1} z^{k-1}+\ldots+C_{1} z+C_{0}\right\}
$$

Then $\left\|p^{*}(A) b\right\| \leq\|p(A) b\| \forall p \in P_{k}^{\infty}$
Consider the evd of $A, A=U D U^{*}$
then $A^{i}=U D^{i} U^{*}$
so for any polynomial p we have $p(A)=U p(D) U^{*}$
$\|p(A) b\|=\left\|U p(D) U^{*} b\right\|=\left\|p(D) b^{\prime}\right\|, \quad b^{\prime}=U^{*} b$

We expect the zeros of p^{*} to "hit" the dominant evals of A

Arnoldi Procedure

Let A be an $n \times n$ general matrix
Let b be a starting vector and set $q_{1}=\frac{b}{\|b\|}$
Set $K_{k}(A, b)=\operatorname{span}\left\{b, A b, A^{2} b, \ldots, A^{k-1} b\right\}$
We will build an ON set $\left\{q_{1}\right\}_{j=1}^{n}$ such that $\left\{q_{j}\right\}_{j=1}^{n}$ is an ON basis for $K_{k}(A, b)$
We formalize this as seeking a fatorization $A=Q H Q^{*}$
where $Q=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ q_{1} & q_{2} & \ldots & q_{n} \\ \mid & \mid & & \mid\end{array}\right]$ is unitary
and where H is a Hessenberg matrix

$$
H=\left[\begin{array}{cccc}
h_{11} & h_{12} & h_{13} & - \\
h_{21} & h_{22} & h_{23} & - \\
0 & h_{32} & h_{33} & - \\
\mid & 0 & & \\
& & 0 &
\end{array}\right]
$$

(we cannot get a tridiagonal since A is not hermition)
(1) $\Leftrightarrow \quad A Q=Q H(2)$

First col of (2) $=A q_{1}=q_{1} h_{11}+q_{2} h_{21}$
$h_{11}=q_{1}^{*} A q_{1}$
$q_{2} h_{21}=A q_{1}-q_{1} h_{11} \leftarrow$ determines q_{2}, q_{1}
Second col of (2):
**** note H is not symmetric
$A q_{2}=q_{1} h_{12}+q_{2} h_{22}+q_{3} h_{32}(3)$
$q_{1}^{*} \times(3) \Rightarrow h_{12}=q_{1}^{*} A q_{2}$
$q_{2}^{*} \times(3) \Rightarrow h_{22}=q_{2}^{*} A q_{2}$
$q_{3} h_{32}=A q_{2}-q_{1} h_{12}-q_{2} h_{22} \quad \rightarrow \quad q_{3}, h_{32}$
The kth Step:
$A q_{k}=\sum_{i=1}^{k} q_{i} h_{i k}+q_{k+1} h_{k+1, k}$
$\rightarrow h_{i k}=q_{i}^{*} A q_{k} \quad$ for $i=1,2, \ldots, k$
$\rightarrow h_{k+1, k} q_{k+1}=A q_{k}-\sum_{i=1}^{k} h_{i k}-q_{i} \rightarrow h_{k+1, k}$ and q_{k+1}
Some comments: in its "pure" form Arnoldi's procedure is more work then Lanczos

- It requires more memory since all q vectors must be stored
- Stabalized Lanczos also requires a lot of storage
- Restarting is a common tool to deal with both memory problems and operation cos of Arnoldi
- Arnoldi converges more slowly, and the theory is less sharp

