Interpolative Decomposition

1. Interpolative Decomposition Continued

Theorem 1. Let \mathbf{A} be an $m \times n$ matrix of exact rank k. The \boldsymbol{A} admits a factorization

$$
\underset{m \times n}{\mathbf{A}}=\underset{m \times k}{\mathbf{A}\left(:, \mathbf{J}_{s}\right)} \underset{k \times n}{\mathbf{Z} .}
$$

Where \mathbf{J}_{s} is an index vector of length k contained in $[1,2, \ldots, n]$, and where $\mathbf{Z}\left(:, \mathbf{J}_{s}\right)=\mathbf{I}_{k}$ and $\max _{i, j}\|\mathbf{Z}(i, j)\| \leq$ 1
1.1. Proof. Case 1: Suppose $\mathrm{m}=\mathrm{k}$ so \mathbf{A} is $\mathrm{k} \times \mathrm{n}$. Pick \mathbf{J}_{s} so that $\left\|\operatorname{det}\left(\mathbf{A}\left(:, \mathbf{J}_{s}\right)\right)\right\|$ is maximized. Let \mathbf{J}_{r} denote the remaining indices, so

$$
\begin{equation*}
\mathbf{J}_{s} \cup \mathbf{J}_{r}=\{1,2,3, \ldots, n\} \tag{2}
\end{equation*}
$$

Where \cup is the disjoint union. In other words,

$$
\begin{align*}
{\left[\begin{array}{ll}
\mathbf{J}_{s} & \mathbf{J}_{r}
\end{array}\right] } & =\left[\begin{array}{lllllll}
\mathbf{j}_{1} & \mathbf{j}_{2} & \cdots & \mathbf{j}_{k} & \mathbf{j}_{k+1} & \cdots & \mathbf{j}_{n}
\end{array}\right] \tag{3}\\
\mathbf{A P} & =\mathbf{A}(:, \mathbf{J})=\left[\begin{array}{lll}
\mathbf{A}\left(:, \mathbf{J}_{s}\right) & \mathbf{A}\left(:, \mathbf{J}_{r}\right)
\end{array}\right] \tag{4}
\end{align*}
$$

For some permutation matrix \mathbf{P}

$$
\begin{equation*}
\mathbf{A}=\mathbf{A}(:, \boldsymbol{J})\left[\mathbf{I}_{k} \quad \mathbf{A}\left(:, \mathbf{J}_{s}\right)^{-1} \mathbf{A}\left(:, \mathbf{J}_{r}\right)\right] \mathbf{P}^{*} \tag{5}
\end{equation*}
$$

With the following

$$
\begin{gathered}
\mathbf{C}=\mathbf{A}(:, \mathbf{J}) \\
\mathbf{Z}=\left[\begin{array}{l}
\left.\mathbf{I}_{k} \quad \mathbf{A}\left(:, \mathbf{J}_{s}\right)^{-1} \mathbf{A}\left(:, \mathbf{J}_{r}\right)\right] \mathbf{P}^{*} \\
\mathbf{T}:=\mathbf{A}\left(:, \mathbf{J}_{s}\right)^{-1} \mathbf{A}\left(:, \mathbf{J}_{r}\right)
\end{array}\right.
\end{gathered}
$$

It remains to be shown that $\|\mathbf{T}(i, j)\| \leq 1$ Recall Cramer's Rule which states that given a $\mathrm{k} \times \mathrm{k}$ matrix \mathbf{B} and the equation $\mathbf{B x}=\mathbf{y}$, that \mathbf{x} can be found by the following method.

$$
\left.\left.\mathbf{x}(i)=\frac{\operatorname{det}\left[\mathbf{b}_{1}\right.}{} \mathbf{b}_{2} \cdots \mathbf{b}_{i-1} \quad \mathbf{y} \quad \mathbf{b}_{i+1} \cdots \mathbf{b}_{k}\right] ~\right] ~\left[\begin{array}{llll}
& \operatorname{det}\left[\mathbf{b}_{1}\right. & \mathbf{b}_{2} & \cdots \\
\mathbf{b}_{k}
\end{array}\right]
$$

where \mathbf{b}_{j} is the $j^{\text {th }}$ column of \mathbf{B}.

$$
\mathbf{A}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \tag{6}\\
\mathbf{C}_{1} & \mathbf{C}_{2} & \cdots & \mathbf{C}_{n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

Then $\mathbf{A}\left(:, \mathbf{J}_{s}\right) \mathbf{T}=\mathbf{A}\left(:, \mathbf{J}_{r}\right) . \mathbf{T}$ is defined as the solution to this equation.

$$
\left[\begin{array}{cccc}
\mid & \mid & & \mid \tag{7}\\
\mathbf{C}_{j 1} & \mathbf{C}_{j 2} & \cdots & \mathbf{C}_{j k} \\
\mid & \mid & & \mid
\end{array}\right] \mathbf{T}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{C}_{j k+1} & \mathbf{C}_{j k+2} & \cdots & \mathbf{C}_{j n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

Cramer's Rule provides formulas for each $\mathbf{T}(i, j)$. For instance,

$$
\mathbf{T}(1,1)=\frac{\operatorname{det}\left[\begin{array}{lllll}
\mathbf{C}_{j k+1} & \mathbf{C}_{j 2} & \mathbf{C}_{j 3} & \cdots & \mathbf{C}_{j n}
\end{array}\right]}{\operatorname{det}\left[\begin{array}{llll}
\mathbf{C}_{j 1} & \mathbf{C}_{j 2} & \cdots & \mathbf{C}_{j k} \tag{8}
\end{array}\right]}
$$

By definition of \mathbf{J}_{s}, the determinant in the denominator is at least as large as the determinant in the numerator in magnitude. The same argument applies for all i, j

$$
\mathbf{T}(2,1)=\frac{\operatorname{det}\left[\begin{array}{lllll}
\mathbf{C}_{j 1} & \mathbf{C}_{j k+1} & \mathbf{C}_{j 2} & \cdots & \mathbf{C}_{j n}
\end{array}\right]}{\operatorname{det}\left[\begin{array}{llll}
\mathbf{C}_{j 1} & \mathbf{C}_{j 2} & \cdots & \mathbf{C}_{j k} \tag{9}
\end{array}\right]}
$$

Case 2: Let $\mathrm{m} \geq \mathrm{k}$. The \mathbf{A} admits some factorization

$$
\begin{equation*}
\underset{m \times n}{\mathbf{A}}=\underset{\underset{1}{m \times k}}{\mathbf{E}} \underset{k \times n}{\mathbf{F}} \tag{10}
\end{equation*}
$$

We show that \mathbf{F} admits a factorization

$$
\begin{equation*}
\mathbf{F}=\mathbf{F}\left(:, \mathbf{J}_{s}\right) \mathbf{Z} \tag{11}
\end{equation*}
$$

For \mathbf{Z} that satisfies the criteria in Theorem 1. Combining Equations 10 and 11

$$
\begin{equation*}
\mathbf{A}=\mathbf{E F}\left(:, \mathbf{J}_{s}\right) \mathbf{Z} \tag{12}
\end{equation*}
$$

Restricting Equation 12 to \mathbf{J}_{s},

$$
\begin{equation*}
\mathbf{A}\left(:, \mathbf{J}_{s}\right)=\mathbf{E F}\left(:, \mathbf{J}_{s}\right) \mathbf{Z}\left(:, \mathbf{J}_{s}\right) \tag{13}
\end{equation*}
$$

Note that $\mathbf{Z}\left(:, \mathbf{J}_{s}\right)=\mathbf{I}_{k}$ by construction. Combining Equations 12 and 13,

$$
\begin{equation*}
\mathbf{A}=\mathbf{A}\left(:, \mathbf{J}_{s}\right) \mathbf{Z} \tag{14}
\end{equation*}
$$

2. Deterministic Methods for Computing the ID

2.1. Option 1. Do as in the proof. This is extremely expensive, but it leads to an optimal result
2.2. Option 2. Use the CPQR from the last lecture.

$$
\mathbf{A} \approx \mathbf{Q}_{1}\left[\begin{array}{ll}
\mathbf{R}_{1,1} & \mathbf{R}_{1,2}
\end{array}\right] \mathbf{P}^{*}=\mathbf{Q} \mathbf{R}_{1,1}\left[\begin{array}{ll}
\mathbf{l} & \mathbf{R}_{1,1}^{-1} \mathbf{R}_{1,2}
\end{array}\right] \mathbf{P}^{*}
$$

With $\mathbf{C}=\mathbf{Q} \mathbf{R}_{1,1}$ and $\mathbf{Z}=\left[\begin{array}{ll}\mathbf{l} & \mathbf{R}_{1,1}^{-1} \mathbf{R}_{1,2}\end{array}\right] \mathbf{P}^{*}$. This method is very computationally efficient. You can use the standard software to accomplish this method. In practice, elements of \mathbf{Z} are more or less bounded in magnitude by 1. Artificial counterexamples exist.

2.3. Option 3. Rank Revealing QR (recommend)

Let $\nu>0$ be a positive number. There exist pivoting strategies that find, in polynomial time, an index set \mathbf{J}_{s} such that $\|\mathbf{T}(i, j)\| \leq 1+\nu$. They also attain a "goodish" rank-k approximation $\left\|\mathbf{A}-\mathbf{Q}_{1}\left[\mathbf{R}_{11} \mathbf{R}_{12}\right] \mathbf{P}^{*}\right\|=\left\|\mathbf{R}_{22}\right\| \approx$ $\sigma_{k+1} \leq p(k, n) \sigma_{k+1}$.

3. RANDOMIZED ID

First Recall the RSVD

$$
\begin{array}{r}
\mathbf{G}=\operatorname{rand}(n, k+p) \\
\mathbf{Y}=\mathbf{A G} \\
\mathbf{Q}=\operatorname{orth}(\mathbf{Y}) \\
\mathbf{B}=\mathbf{Q}^{*} \mathbf{A} \\
\mathbf{B}=\hat{\mathbf{U}} \mathbf{D} \mathbf{V}^{*} \\
\mathbf{U}=\mathbf{Q} \hat{\mathbf{U}} \\
\mathbf{A} \approx \mathbf{U D V}^{*}
\end{array}
$$

Assume that \mathbf{A} has exact rank k.

$$
\begin{array}{r}
\mathbf{G}=\operatorname{rand}(n, k) \\
\mathbf{Y}=\mathbf{A G} \\
{\left[\mathbf{I}_{s}, \mathbf{X}\right]=\operatorname{IDrow}(\mathbf{Y}, k)} \\
\mathbf{Y}=\mathbf{X Y}\left(\mathbf{I}_{s},:\right) \tag{15}
\end{array}
$$

Automatically $\mathbf{A}=\mathbf{X A}\left(\mathbf{I}_{s},:\right)$. With probability 1 , we know that for some \mathbf{F}

$$
\begin{equation*}
\mathbf{A}=\mathbf{2} \mathbf{Y} \tag{16}
\end{equation*}
$$

Combining Equation 16 and 15,

$$
\begin{equation*}
\mathbf{A}=\mathbf{X} \mathbf{Y}\left(\mathbf{I}_{s},:\right) \mathbf{F} \tag{17}
\end{equation*}
$$

Restricting Equation 17,

$$
\begin{equation*}
\mathbf{A}\left(\mathbf{I}_{s},:\right)=\mathbf{X}\left(\mathbf{I}_{s},:\right) \mathbf{Y}\left(\mathbf{I}_{s},:\right) \mathbf{F} \tag{18}
\end{equation*}
$$

Combining Equation 18 and 17,

$$
\begin{equation*}
\mathbf{A}=\mathbf{X A}\left(\mathbf{I}_{s},:\right) \tag{19}
\end{equation*}
$$

