
Course notes APPM 5720 — P.G. Martinsson February 18, 2016

Power Iteration Methods

1. NUMERICALLY STABLE SUBSPACE ITERATION

Let A be an n× n Hermitian matrix.

Draw n× l Gaussian vectors G.
Y1 = AG
Q1 = orth(Y1) ; /* In this case, orth(A) is Q from QR decomposition. */
Y2 = AQ1

Q2 = orth(Y2)
...
B = Q∗kAQk

B = ÛDÛ
U = QkÛ
Then A ≈ UDU∗.

This is a numerically stable version of the previously discussed algorithm.

Claim: Suppose dim(col(Qj)) = dim(AjG) = l for j = 1, 2, . . . , q. Then col(Qj) = col(AjG).

Sketch of Proof: Trivial for q = 1. For q = 2,

Y2 = AQ1 = A Y1︸︷︷︸
AG

R−11 = A2GR−11

Since the dimensions are the same, col(Q2) = col(A2G). q = 3 follows in much the same way, and the rest is
proved via induction.

Note: The assumption on dimensionality is unnecessary. If G is gaussian, and rank(A) ≥ l, then the assumption
holds with probability 1.

Note: This method is very conservative, and emphasizes numberical stability. Machine precision gets finicky if
steps are skipped, so we have to consider the question of “good enough”.

2. DIAGONAL HERMITIAN MATRICES

“Every Hermitian matrix is ’morally’ diagonal”. What does this mean? Consider a 2×2 matrixA such thatA = A∗

(definition of Hermitian). Then there exists an orthonormal basis {v1, v2} of the eigenvectors of A.

A =

 ↑ ↑
v1 v2
↓ ↓

[λ1 0
0 λ2

] [
← v∗1 →
← v∗2 →

]

Let x ∈ R2, then

x = v1(v1 · x) + v2(v2 · x)
= v1v

∗
1x+ v2v

∗
2x

⇒

 ↑ ↑
v1 v2
↓ ↓


︸ ︷︷ ︸

V

[
← v∗1 →
← v∗2 →

]
︸ ︷︷ ︸

V ∗

x

1

Course notes APPM 5720 — P.G. Martinsson February 18, 2016

If we set

x′ =

[
x′1
x′2

]
= V ∗x

Then x′1, x′2 are the coordinates of x in the {v1, v2} coordinate system.

y = Ax⇒ V ∗y = V ∗AV V ∗X

⇒ y′ = Dx′

Once you move into the coordinate system formed by {v1, v2}, the matrix is diagonal.

Note: all decompositions/operations are coordinate system independent.

3. POWER ITERATION FOR GENERAL MATRICES

Let A be m× n.
Let A = UDV ∗ be the SVD of A.
(AA∗)A = UDV ∗︸ ︷︷ ︸

A

V DU∗︸ ︷︷ ︸
A

UDV ∗︸ ︷︷ ︸
A

= UD3V ∗.

(AA∗)2A = (AA∗)(AA∗)A = UDV ∗V DU∗UD3V ∗ = UD5V ∗.
etc: (AA∗)qA = UD2q+1V ∗ (proved with induction).

The general idea of this algorithm is to start by drawing gaussian vectors, decompose, find Q, and continue.

G = randn(n, l)
Y = AG
for j = 1, 2, . . . , q do

Z = A∗Y
Y = AZ

end
Q = orth(Y)

This algorithm is the quick and dirty version that is great for fast approximation.

A slower, but more stable and accurate version is as follows:

G = randn(n, l)
Y = AG
Q = orth(Y)
for j = 1, 2, . . . , q do

Z = A∗Q
W = orth(Z)
Y = AW
Q = orth(Y)

end

4. KRYLOV METHODS

That power iteration looks similar to another set of iterative methods, called Krylov methods.
2

Course notes APPM 5720 — P.G. Martinsson February 18, 2016

Recall the single method power scheme for a square matrix.

g = rand(n, 1)
for i = 1, 2, . . . , p do

yi = Ayi−1
end
Then V1 ≈ yp/‖yp‖

This algorithm is very wasteful however, as we lose all info on yi. Consider the subspace K = K(A, g) =
span{g,Ag,A2g, . . . , Ap−1g}. In a krylov method we project A onto Kp and use the eigenvalues of the resulting
smaller matrix as approximations to the eigenvalues of A.

To be precise, set

Q = orth

 ↑ ↑ ↑ ↑
g Ag A2g . . . Ap−1g
↓ ↓ ↓ ↓


Set T = Q∗AQ. Using the Eigenvalue Decomposition of T = ÛDÛ∗, U = QÛ , therefore A ≈ UDU∗.

3

	1. Numerically Stable Subspace Iteration
	2. Diagonal Hermitian Matrices
	3. Power Iteration for General Matrices
	4. Krylov Methods

