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1. REVIEW: THE RANDOMIZED "POWER METHOD”

This section is a review from class on 02/12/2016. Let A be an m x n matrix. Further, define % to be our target
rank and p the oversampling parameter. For notational convenience, let [ = k + p. We are seeking an approximate
SVD of A: A ~ UDV¥*. Recall the familiar process:

Draw random matrix G = randn(n,[)
Create sampling matrix Y = AG
Form Q = orth(Y)

Let B = Q*A

Calculate an SVD of B, B = UDV*
Finally, U = QU

One can prove, for ¢ = 0 (the number of power iterations) and C' a constant:
E||A — UDV*|| = E[|A — QQ*A|| < C(3;.,, 03)% < C(Vn — K)ok

With the worst case occurring when no decay is present in the singular values past ox11. We will now look at
how these bounds change when we increment ¢. For ¢ > 0 we have:

E||A — QQ*A|| < C(vn — k)T o4

From these bounds, we infer that the usage of power iterations can be advantageous in the reduction of expected
error. Let’s take a closer look at this method.

2. POWER METHOD

For simplicity, assume that A is Hermitian (A = A*, In the case where A is not Hermitian, we can adapt the process
to accommodate.) Consider the eigendecomposition of A: A = VDV* where V contains the eigenvectors of A
and D is diagonal whose elements are the ordered eigenvalues of A (|A1]| > [A2| > -+ > |A,]). With this, we can
compute different integer powers of our matrix A:

2.1. Powers of A.
A’ = AA = VDV*VDV*
= VDIDV*
= VD2Vv*
A3 = (A%)A = (VD?V*)VDV*
= vD?IDV*
= VvD3v*

A7 = VDV*

And so, if {\,v} is an eigenpair of A then {\?,v} is an eigenpair of A?. Suppose we seek to approximate the
dominant eigenvector of A, say v.

2.2. Classical Power Iterations.

e Draw starting vector g € R™. A common choice is to choose g from a Gaussian distribution, but this is not

a requirement.
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o Let:
y1 = Ag
y2 = Ay; = A%g
ys = Ayz = A’g
ys = Ays = A'g
ys = Ays = A’g

This says that y,, will get closer to alignment with v; as n is incremented. To see why it works, write g = g1v1 +
Gava+. . . gnvy, (Works since {v; }?_; forms an orthonormal basis). Then y, = A%g = g1 \fv1+ga dva+. . . gnAlvp.
If [A1] > |A2|, the first term, g1 AJvy, will dominate as g increases (which of course can go wrong if g1 = 0).

,theny—q—>:|:vlasq—>oo.

Theorem 1. Suppose A; > 0 and || > |\ Toal

The proof of this is left as an exercise for the reader. Upon closer inspection of this process, it is clear there are
some drawbacks. Used as a numerical method, it can be rather primitive.

2.3. Drawbacks and Remedies.

e If |\;| &= | \2| the rate of convergence can be quite slow
e A needs to be accessed many different times
e An unlucky draw of g can yield a small g;v; which will result in a large number of iterations required.

e Quite inefficient if you desire more than one eigenvector
These concerns can be ameliorated by choosing multiple starting vectors.

e Draw [ starting vectors g;t_, € R". Let G = [g1, 92, - - - , 91]-
o Let:

Y; = AG

Y, = AY; = A%G

Y; = AY,; = A3G

Y, = AY; = A'G

Ys = AY; = A°G = [A3q, Adqa, ..., A3q)]

When performing this, one needs to be quite careful, round-off errors can hurt you!
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1 0 0]
24. Example1: LetA= [0 o 0| wherel>a>32>0
0 0 p

The eigenpairs of A are easily calculated as:

1 0 0
A, v} =A{1, [0] ), {A2,v2} = {a, [1] }, {As,v3} = {8, [0}
0 0 1

Let us try to calculate v; and v via the proposed remedy to our drawbacks. We run the scheme and find:

1 0 O g1l 912 g11 912
Y, =AIG= 1[0 o 0] g1 g22| = |21 %2
0 0 B9 |g3s1 932 Blg31  Big32

In precise arithmetic, there are no issues, we are successful! However, in floating point arithmetic, we are far
from successful. Recall, ||, | 3] are both smaller than 1, suppose q is large enough to force a? < €achine = 10716
(say a = 0.1, ¢ = 20). In this case, since 8 < «, we have:

g1 912
Y, =10 0
0 0

This successfully captures v; but yields no information for vo. Once, again, this can be fixed! To do so, we
must orthonormalize between each iteration.

e Draw [ starting vectors gilz-zl € R™" Let G = [g1,92,---,91)-
o Let:

Y1 = AG
Q1 = orth(Y7)

Yo = AQ1
Q2 = orth(Y2)

Y3 = AQ>
Q3 = orth(Y3)

‘We end this lecture with a theorem:

Theorem 2. Col(Y,) = Col(A’G) in exact arithmetic

The proof of which is too small to be contained within the margin...(possibly next lecture?)



