## 1. Review: The Randomized "Power Method"

This section is a review from class on $\mathbf{0 2 / 1 2 / 2 0 1 6}$. Let $\mathbf{A}$ be an $m \times n$ matrix. Further, define $k$ to be our target rank and $p$ the oversampling parameter. For notational convenience, let $l=k+p$. We are seeking an approximate SVD of $\mathbf{A}: \mathbf{A} \approx$ UDV*. Recall the familiar process:

- Draw random matrix $\mathbf{G}=\operatorname{randn}(n, l)$
- Create sampling matrix $\mathbf{Y}=\mathbf{A G}$
- Form $\mathbf{Q}=\operatorname{orth}(\mathbf{Y})$
- Let $\mathbf{B}=\mathbf{Q}^{*} \mathbf{A}$
- Calculate an SVD of $\mathbf{B}, \mathbf{B}=$ ÛDV*
- Finally, $\mathbf{U}=\mathbf{Q U Q}$

One can prove, for $q=0$ (the number of power iterations) and $C$ a constant:
$\mathbb{E}\left\|\mathbf{A}-\mathbf{U D V}^{*}\right\|=\mathbb{E}\left\|\mathbf{A}-\mathbf{Q Q}^{*} \mathbf{A}\right\| \leq C\left(\sum_{j>k} \sigma_{j}^{2}\right)^{\frac{1}{2}} \leq C(\sqrt{n-k}) \sigma_{k+1}$
With the worst case occurring when no decay is present in the singular values past $\sigma_{k+1}$. We will now look at how these bounds change when we increment $q$. For $q>0$ we have:
$\mathbb{E}\left\|\mathbf{A}-\mathbf{Q} \mathbf{Q}^{*} \mathbf{A}\right\| \leq C(\sqrt{n-k})^{\frac{1}{2 q+1}} \sigma_{k+1}$
From these bounds, we infer that the usage of power iterations can be advantageous in the reduction of expected error. Let's take a closer look at this method.

## 2. Power Method

For simplicity, assume that $\mathbf{A}$ is Hermitian $\left(\mathbf{A}=\mathbf{A}^{*}\right.$, In the case where $\mathbf{A}$ is not Hermitian, we can adapt the process to accommodate.) Consider the eigendecomposition of $\mathbf{A}: \mathbf{A}=\mathbf{V D V}^{*}$ where $\mathbf{V}$ contains the eigenvectors of $\mathbf{A}$ and $\mathbf{D}$ is diagonal whose elements are the ordered eigenvalues of $\mathbf{A}\left(\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|\right)$. With this, we can compute different integer powers of our matrix $\mathbf{A}$ :

### 2.1. Powers of A.

$$
\begin{aligned}
\mathbf{A}^{2} & =\mathbf{A A}=\mathbf{V D V}^{*} \mathbf{V D V}^{*} \\
& =\mathbf{V D I D V}^{*} \\
& =\mathbf{V D}^{2} \mathbf{V}^{*} \\
\mathbf{A}^{3} & =\left(\mathbf{A}^{2}\right) \mathbf{A}=\left(\mathbf{V D}^{2} \mathbf{V}^{*}\right) \mathbf{V} \mathbf{D V}^{*} \\
& =\mathbf{V D}^{\mathbf{2}} \mathbf{I} \mathbf{D} \mathbf{V}^{*} \\
& =\mathbf{V D}^{3} \mathbf{V}^{*} \\
& \vdots \\
\mathbf{A}^{q} & =\mathbf{V D}^{\mathbf{q}} \mathbf{V}^{*}
\end{aligned}
$$

And so, if $\{\lambda, v\}$ is an eigenpair of $\mathbf{A}$ then $\left\{\lambda^{q}, v\right\}$ is an eigenpair of $\mathbf{A}^{q}$. Suppose we seek to approximate the dominant eigenvector of $\mathbf{A}$, say $v_{1}$.

### 2.2. Classical Power Iterations.

- Draw starting vector $g \in \mathbb{R}^{n}$. A common choice is to choose $g$ from a Gaussian distribution, but this is not a requirement.
- Let:

$$
\begin{aligned}
y_{1} & =\mathbf{A} g \\
y_{2} & =\mathbf{A} y_{1}=\mathbf{A}^{2} g \\
y_{3} & =\mathbf{A} y_{2}=\mathbf{A}^{3} g \\
y_{4} & =\mathbf{A} y_{3}=\mathbf{A}^{4} g \\
y_{5} & =\mathbf{A} y_{4}=\mathbf{A}^{5} g
\end{aligned}
$$

This says that $y_{n}$ will get closer to alignment with $v_{1}$ as $n$ is incremented. To see why it works, write $g=g_{1} v_{1}+$ $g_{2} v_{2}+\ldots g_{n} v_{n}$ (works since $\left\{v_{i}\right\}_{i=1}^{n}$ forms an orthonormal basis). Then $y_{q}=\mathbf{A}^{q} g=g_{1} \lambda_{1}^{q} v_{1}+g_{2} \lambda_{2}^{q} v_{2}+\ldots g_{n} \lambda_{n}^{q} v_{n}$. If $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$, the first term, $g_{1} \lambda_{1}^{q} v_{1}$, will dominate as $q$ increases (which of course can go wrong if $g_{1}=0$ ).
Theorem 1. Suppose $\lambda_{1}>0$ and $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$, then $\frac{y_{q}}{\left\|y_{q}\right\|} \rightarrow \pm v_{1}$ as $q \rightarrow \infty$.
The proof of this is left as an exercise for the reader. Upon closer inspection of this process, it is clear there are some drawbacks. Used as a numerical method, it can be rather primitive.

### 2.3. Drawbacks and Remedies.

- If $\left|\lambda_{1}\right| \approx\left|\lambda_{2}\right|$ the rate of convergence can be quite slow
- A needs to be accessed many different times
- An unlucky draw of $g$ can yield a small $g_{1} v_{1}$ which will result in a large number of iterations required.
- Quite inefficient if you desire more than one eigenvector

These concerns can be ameliorated by choosing multiple starting vectors.

- Draw $l$ starting vectors $g_{i=1}^{l} \in \mathbb{R}^{n}$. Let $\mathbf{G}=\left[g_{1}, g_{2}, \ldots, g_{l}\right]$.
- Let:

$$
\begin{aligned}
Y_{1} & =\mathbf{A} G \\
Y_{2} & =\mathbf{A} Y_{1}=\mathbf{A}^{2} G \\
Y_{3} & =\mathbf{A} Y_{2}=\mathbf{A}^{3} G \\
Y_{4} & =\mathbf{A} Y_{3}=\mathbf{A}^{4} G \\
Y_{5} & =\mathbf{A} Y_{4}=\mathbf{A}^{5} G=\left[\mathbf{A}^{3} q_{1}, \mathbf{A}^{3} q_{2}, \ldots, \mathbf{A}^{3} q_{l}\right] \\
& \vdots
\end{aligned}
$$

When performing this, one needs to be quite careful, round-off errors can hurt you!
2.4. Example 1: Let $\mathbf{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \beta\end{array}\right]$ where $1>\alpha>\beta \geq 0$

The eigenpairs of $\mathbf{A}$ are easily calculated as:
$\left\{\lambda_{1}, v_{1}\right\}=\left\{1,\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\},\left\{\lambda_{2}, v_{2}\right\}=\left\{\alpha,\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\},\left\{\lambda_{3}, v_{3}\right\}=\left\{\beta,\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
Let us try to calculate $v_{1}$ and $v_{2}$ via the proposed remedy to our drawbacks. We run the scheme and find:
$Y_{q}=\mathbf{A}^{q} G=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \alpha^{q} & 0 \\ 0 & 0 & \beta^{q}\end{array}\right]\left[\begin{array}{ll}g_{11} & g_{12} \\ g_{21} & g_{22} \\ g_{31} & g_{32}\end{array}\right]=\left[\begin{array}{cc}g_{11} & g_{12} \\ \alpha^{q} g_{21} & \alpha^{q} g_{22} \\ \beta^{q} g_{31} & \beta^{q} g_{32}\end{array}\right]$
In precise arithmetic, there are no issues, we are successful! However, in floating point arithmetic, we are far from successful. Recall, $|\alpha|,|\beta|$ are both smaller than 1 , suppose $q$ is large enough to force $\alpha^{q}<\epsilon_{\text {machine }} \approx 10^{-16}$ (say $\alpha=0.1, q=20$ ). In this case, since $\beta<\alpha$, we have:
$Y_{q}=\left[\begin{array}{cc}g_{11} & g_{12} \\ 0 & 0 \\ 0 & 0\end{array}\right]$
This successfully captures $v_{1}$ but yields no information for $v_{2}$. Once, again, this can be fixed! To do so, we must orthonormalize between each iteration.

- Draw $l$ starting vectors $g_{i i=1}^{l} \in \mathbb{R}^{n}$. Let $\mathbf{G}=\left[g_{1}, g_{2}, \ldots, g_{l}\right]$.
- Let:

$$
\begin{aligned}
& Y_{1}=\mathbf{A} G \\
& Q_{1}=\operatorname{arth}\left(Y_{1}\right) \\
& \\
& Y_{2}=\mathbf{A} Q_{1} \\
& Q_{2}=\operatorname{orth}\left(Y_{2}\right) \\
& \\
& Y_{3}=\mathbf{A} Q_{2} \\
& Q_{3}=\operatorname{orth}\left(Y_{3}\right)
\end{aligned}
$$

We end this lecture with a theorem:
Theorem 2. $\operatorname{Col}\left(Y_{q}\right)=\operatorname{Col}\left(\mathbf{A}^{q} G\right)$ in exact arithmetic
The proof of which is too small to be contained within the margin...(possibly next lecture?)

