
Course notes APPM 5720 — P.G. Martinsson February 15, 2016

1. REVIEW: THE RANDOMIZED ”POWER METHOD”

This section is a review from class on 02/12/2016. Let A be an m × n matrix. Further, define k to be our target
rank and p the oversampling parameter. For notational convenience, let l = k + p. We are seeking an approximate
SVD of A: A ≈ UDV∗. Recall the familiar process:

• Draw random matrix G = randn(n,l)
• Create sampling matrix Y = AG
• Form Q = orth(Y)
• Let B = Q∗A
• Calculate an SVD of B, B = ÛDV∗

• Finally, U = QÛ

One can prove, for q = 0 (the number of power iterations) and C a constant:

E||A−UDV∗|| = E||A−QQ∗A|| ≤ C(
∑

j>k σ
2
j)

1
2 ≤ C(

√
n− k)σk+1

With the worst case occurring when no decay is present in the singular values past σk+1. We will now look at
how these bounds change when we increment q. For q > 0 we have:

E||A−QQ∗A|| ≤ C(
√
n− k)

1
2q+1σk+1

From these bounds, we infer that the usage of power iterations can be advantageous in the reduction of expected
error. Let’s take a closer look at this method.

2. POWER METHOD

For simplicity, assume that A is Hermitian (A = A∗, In the case where A is not Hermitian, we can adapt the process
to accommodate.) Consider the eigendecomposition of A: A = VDV∗ where V contains the eigenvectors of A
and D is diagonal whose elements are the ordered eigenvalues of A (|λ1| ≥ |λ2| ≥ · · · ≥ |λn|). With this, we can
compute different integer powers of our matrix A:

2.1. Powers of A.

A2 = AA = VDV∗VDV∗

= VDIDV∗

= VD2V∗

A3 = (A2)A = (VD2V∗)VDV∗

= VD2IDV∗

= VD3V∗

...

Aq = VDqV∗

And so, if {λ, v} is an eigenpair of A then {λq, v} is an eigenpair of Aq. Suppose we seek to approximate the
dominant eigenvector of A, say v1.

2.2. Classical Power Iterations.

• Draw starting vector g ∈ Rn. A common choice is to choose g from a Gaussian distribution, but this is not
a requirement.

1

Course notes APPM 5720 — P.G. Martinsson February 15, 2016

• Let:

y1 = Ag

y2 = Ay1 = A2g

y3 = Ay2 = A3g

y4 = Ay3 = A4g

y5 = Ay4 = A5g

...

This says that yn will get closer to alignment with v1 as n is incremented. To see why it works, write g = g1v1 +
g2v2+. . . gnvn (works since {vi}ni=1 forms an orthonormal basis). Then yq = Aqg = g1λ

q
1v1+g2λ

q
2v2+. . . gnλ

q
nvn.

If |λ1| > |λ2|, the first term, g1λ
q
1v1, will dominate as q increases (which of course can go wrong if g1 = 0).

Theorem 1. Suppose λ1 > 0 and |λ1| > |λ2|, then yq
||yq || → ±v1 as q →∞.

The proof of this is left as an exercise for the reader. Upon closer inspection of this process, it is clear there are
some drawbacks. Used as a numerical method, it can be rather primitive.

2.3. Drawbacks and Remedies.

• If |λ1| ≈ |λ2| the rate of convergence can be quite slow

• A needs to be accessed many different times

• An unlucky draw of g can yield a small g1v1 which will result in a large number of iterations required.

• Quite inefficient if you desire more than one eigenvector

These concerns can be ameliorated by choosing multiple starting vectors.

• Draw l starting vectors gili=1 ∈ Rn. Let G = [g1, g2, . . . , gl].
• Let:

Y1 = AG

Y2 = AY1 = A2G

Y3 = AY2 = A3G

Y4 = AY3 = A4G

Y5 = AY4 = A5G = [A3q1,A
3q2, . . . ,A

3ql]

...

When performing this, one needs to be quite careful, round-off errors can hurt you!

2

Course notes APPM 5720 — P.G. Martinsson February 15, 2016

2.4. Example 1: Let A =

1 0 0
0 α 0
0 0 β

 where 1 > α > β ≥ 0

The eigenpairs of A are easily calculated as:

{λ1, v1} = {1,

10
0

}, {λ2, v2} = {α,
01
0

}, {λ3, v3} = {β,
00
1

}
Let us try to calculate v1 and v2 via the proposed remedy to our drawbacks. We run the scheme and find:

Yq = AqG =

1 0 0
0 αq 0
0 0 βq

g11 g12
g21 g22
g31 g32

 =

 g11 g12
αqg21 αqg22
βqg31 βqg32


In precise arithmetic, there are no issues, we are successful! However, in floating point arithmetic, we are far
from successful. Recall, |α|, |β| are both smaller than 1, suppose q is large enough to force αq < εmachine u 10−16

(say α = 0.1, q = 20). In this case, since β < α, we have:

Yq =

g11 g12
0 0
0 0


This successfully captures v1 but yields no information for v2. Once, again, this can be fixed! To do so, we
must orthonormalize between each iteration.

• Draw l starting vectors gili=1 ∈ Rn. Let G = [g1, g2, . . . , gl].
• Let:

Y1 = AG

Q1 = orth(Y1)

Y2 = AQ1

Q2 = orth(Y2)

Y3 = AQ2

Q3 = orth(Y3)

...

We end this lecture with a theorem:

Theorem 2. Col(Yq) = Col(AqG) in exact arithmetic

The proof of which is too small to be contained within the margin...(possibly next lecture?)

3

