## Lanczos Iteration

This section is a repeat of the end of class on Wednesday, February 17. Let $\mathbf{A}$ be a $n \times n$ matrix with $\mathbf{A}=\mathbf{A}^{*}$. Let $\vec{q}_{1} \in \mathbb{R}^{n}$ is a starting vector such that $\left\|\mathbf{q}_{1}\right\|=1$. We seek a factorization

$$
\begin{equation*}
\mathbf{A}=\mathbf{Q} \mathbf{T} \mathbf{Q}^{*} \tag{1}
\end{equation*}
$$

$\mathbf{Q}$ should be unitary with the first column of $\mathbf{Q}=\vec{q}_{1}$ and $\mathbf{T}$ should be tridiagonal

## 1. Iteration Process

1.1. Note. $\lambda$ is a an eigenvalue of $\mathbf{A}$ if and only if $\lambda$ is an eigenvalue of $\mathbf{T}$. Also, we typically stop after $k$ steps

$$
\mathbf{A} \approx \mathbf{Q}(:, 1: k) \mathbf{T}(1: k, 1: k) \mathbf{Q}(:, 1: k)^{*}
$$

1.2. Iteration. Multiply 1 by $\mathbf{Q}$ from the right:

$$
\begin{equation*}
\mathbf{A Q}=\mathbf{Q} \mathbf{T} \tag{2}
\end{equation*}
$$

Looking at the first column of 2

$$
\begin{gathered}
\mathbf{A} \vec{q}_{1}=\vec{q}_{1} t_{1,1}+\vec{q}_{2} t_{2,1} \\
\vec{q}_{1}^{*} \mathbf{A} \vec{q}_{1}=\vec{q}_{1}^{*} \vec{q}_{1} t_{1,1}+\vec{q}_{1}^{*} \vec{q}_{2} t_{2,1}
\end{gathered}
$$

Since Q is orthonormal, $\vec{q}_{1}^{*} \vec{q}_{2}=0$ and $\vec{q}_{1}^{*} \vec{q}_{1}=1$

$$
\begin{gathered}
t_{1,1}=\vec{q}_{1}^{*} \mathbf{A} \vec{q}_{1} \\
t_{2,1} \vec{q}_{2}=\mathbf{A} \vec{q}_{1}-t_{1,1} \vec{q}_{1}
\end{gathered}
$$

Set $\vec{r}_{1}=\mathbf{A} \vec{q}_{1}-t_{1,1} \vec{q}_{1}$

$$
\begin{aligned}
t_{2,1} & =\left\|\vec{r}_{1}\right\| \\
\vec{q}_{2} & =\frac{\vec{r}_{1}}{t_{2,1}}
\end{aligned}
$$

$\mathbf{T}$ is symmetric so $t_{2,1}=t_{1,2}$ Looking at the second column of 2

$$
\mathbf{A} \vec{q}_{2}=\vec{q}_{1} t_{1,2}+\vec{q}_{2} t_{2,2}+\vec{q}_{3} t_{3,2}
$$

The left hand side of the equation, and the first two terms of the right hand side of the equation are known. This leaves $\vec{q}_{3} t_{3,2}$ as the only unknown

$$
\begin{gathered}
\vec{q}_{2}^{*} \mathbf{A} \vec{q}_{2}=t_{2,2} \\
\vec{r}_{2}=\vec{q}_{3} t_{3,2}=\mathbf{A} \vec{q}_{2}-t_{1,2} \vec{q}_{1}-t_{2,2} \vec{q}_{2} \\
t_{3,2}=\left\|\vec{r}_{2}\right\| \\
\overrightarrow{q_{3}}=\frac{\overrightarrow{r_{2}}}{t_{3,2}}
\end{gathered}
$$

Looking at the $k^{t h}$ step,

$$
\begin{gathered}
\mathbf{A} \vec{q}_{k}=\vec{q}_{k-1} t_{k-1, k}+\vec{q}_{k} t_{k, k}+\vec{q}_{k+1} t_{k+1, k} \\
t_{k, k}=\vec{q}_{k}^{*} \mathbf{A} \vec{q}_{k} \\
\vec{r}_{k}=\mathbf{A} \vec{q}_{k}-t_{k-1, k} \vec{q}_{k-1}-t_{k, k} \vec{q}_{k} \\
t_{k+1, k}=\left\|\vec{r}_{k}\right\| \\
\vec{q}_{k+1}=\frac{\vec{r}_{k}}{t_{k+1, k}} \\
1
\end{gathered}
$$

1.3. Lanczos Iteration as a function. The inputs to the LANCZOS Iteration are as follows: $\mathbf{A}$ and $\vec{q}_{1}$ such that $\left\|\vec{q}_{1}\right\|=1$

$$
\begin{gathered}
t_{1,1}=\vec{q}_{1}^{*} \mathbf{A} \vec{q}_{1} \\
\vec{r}_{1}=\mathbf{A} \vec{q}_{1}-t_{1,1} \vec{q}_{1} \\
\text { for } \mathrm{j}=2,3, \ldots, \mathrm{n} \\
t_{j-1, j}=\left\|\vec{r}_{j-1}\right\| \\
\vec{q}_{j}=\frac{\vec{r}_{j-1}}{t_{j-1, j}} \\
t_{j, j}=\vec{q}_{j}^{*} \mathbf{A} \vec{q}_{j} \\
\vec{r}_{j}=\mathbf{A} \vec{q}_{j}-t_{j-1, j} \vec{q}_{j-1}-t_{j, j} \vec{q}_{j} \\
\text { end }
\end{gathered}
$$

1.4. Remarks about Q. Claim For any $k,\left\{\vec{q}_{j}\right\}_{j=1}^{k}$ is an Orthonormal basis for $\operatorname{Span}\left\{\vec{q}_{1}, \mathbf{A} \vec{q}_{1}, \ldots, \mathbf{A}^{k-1} \vec{q}_{1}\right\}$ Sketch of the Proof Obviously true for $\mathrm{k}=1 . \mathrm{k}=2$

$$
\vec{q}_{2}=\frac{1}{t_{2,1}}\left(\mathbf{A} \vec{q}_{1}-t_{1,1} \vec{q}_{1}\right) \in \operatorname{Span}\left\{\vec{q}_{1}, \mathbf{A} \vec{q}_{1}\right\}
$$

Note $\operatorname{Span}\left\{\vec{q}_{1}, \mathbf{A} \vec{q}_{1}\right\}$ has dimension $2 \mathbf{k}=\mathbf{3}$

$$
\vec{q}_{3}=\frac{1}{t_{3,2}}\left(\mathbf{A} \vec{q}_{2}-t_{2,1} \vec{q}_{1}-t_{2,2} \vec{q}_{2}\right) \in \operatorname{Span}\left\{\vec{q}_{1}, \vec{q}_{2}, \mathbf{A} \vec{q}_{1}\right\} \subseteq \operatorname{Span}\left\{\vec{q}_{1}, \mathbf{A} \vec{q}_{1}, \mathbf{A}^{2} \vec{q}_{1}\right\}
$$

Induction can be used to complete the proof
1.5. Invariant Subspaces. What if $\vec{r}_{k}=0$ at some step k. Then $\mathbf{A} \vec{q}_{k}=\vec{q}_{k-1} t_{k-1, k}+\vec{q}_{k} t_{k, k}$. Set $V=$ $\operatorname{Span}\left\{\vec{q}_{1}, \vec{q}_{2}, \ldots, \vec{q}_{k}\right\}$. Then $V$ is an invariant subspace of $\mathbf{A}$. Suppose $\vec{v} \in V \Longleftrightarrow \vec{v}=\sum_{j=1}^{k} c_{j} \vec{q}_{j}$

$$
\mathbf{A} \vec{v}=\sum_{j=1}^{k} c_{j} \mathbf{A} \vec{q}_{j}=c_{k} \mathbf{A} \vec{q}_{k}+\sum_{j=1}^{k-1} c_{j} \mathbf{A} \vec{q}_{j}
$$

$\mathbf{A} \vec{q}_{k} \in \operatorname{Span}\left\{\vec{q}_{k+1}, \vec{q}_{k}\right\} \subseteq V$ and $\sum_{j=1}^{k-1} c_{j} \mathbf{A} \vec{q}_{j} \in V$, so $\mathbf{A} \vec{v} \in V$ We see that $\vec{q}_{1}$ lies in an invariant subspace of $\mathbf{A}$. Suppose $\operatorname{rank}(\mathbf{A})=p$. Suppose $\vec{g}$ is a Gaussian vector and set $\vec{q}_{1}=\frac{\vec{g}}{\|\overrightarrow{\|}\|}$. Let $\left\{\vec{v}_{j}\right\}_{j=1}^{p}$ be the eigenvectors of $\mathbf{A}$ with eigenvalues $\lambda_{j}$ so $\lambda_{j} \neq 0$

$$
\vec{q}_{1}=\frac{1}{\|\vec{g}\|} \sum_{j=1}^{p} c_{j} \vec{v}_{j}
$$

All coefficients $c_{j}$ are Gaussian random numbers. But, if you should happen to find $\vec{r}_{k}=0$, then you found an invariant subspace which is very nice because now

$$
\mathbf{A}=\mathbf{Q} \mathbf{T} \mathbf{Q}^{*}=\left[\mathbf{Q}_{k} \mathbf{Q}_{k}\right]\left[\begin{array}{cc}
\mathbf{T}_{L L} & 0 \\
0 & \mathbf{T}_{R R}
\end{array}\right]\left[\begin{array}{c}
\mathbf{Q}_{L}^{*} \\
\mathbf{Q}_{L}^{*}
\end{array}\right]=\mathbf{Q}_{L} \mathbf{T}_{L L} \mathbf{Q}_{L}^{*}+\mathbf{Q}_{R} \mathbf{T}_{R R} \mathbf{Q}_{R}^{*}
$$

The eigenvalues of $\mathbf{T}_{L L}$ are all eigenvalues of $\mathbf{A}$. Pick $\vec{q}_{k+1}$ as a random vector that is orthongonal to $\vec{q}_{1}, \vec{q}_{2}, \ldots, \vec{q}_{k}$ and proceed.

$$
\begin{gathered}
\vec{g}=\operatorname{randn}(n, 1) \\
\vec{r}=\vec{g}-\sum_{j=1}^{k}\left(\vec{q}_{j}^{*} \vec{g}\right) \vec{q}_{j} \\
\vec{q}_{k+1}=\frac{\vec{r}}{\|\vec{r}\|}
\end{gathered}
$$

If all you want are eigenvalues ( not eigenvectors) , then you only need to store $\mathbf{T}$ and the last two q -vectors
1.6. Stability. The Lanczos procedure is unstable. $t_{j-1, j}$ can be very small. The round-off errors will cause the sequence $\left\{\vec{q}_{j}\right\}_{j=1}^{k}$ to lose orthogonality as k increases. To fix this, one can store all $\left\{\vec{q}_{j}\right\}$ and explicitly reorthonormalize. Once you compute $\vec{r}_{j}$, do

$$
\vec{r}_{k} \leftarrow \vec{r}_{k}-\sum_{k=1}^{j-1}\left(\vec{r}_{k} \vec{q}_{j}\right) \vec{q}_{j}
$$

