Lanczos Iteration

This section is a repeat of the end of class on Wednesday, February 17. Let **A** be a $n \times n$ matrix with **A** = **A***. Let $\vec{q_1} \in \mathbb{R}^n$ is a starting vector such that $||\mathbf{q_1}|| = 1$. We seek a factorization

(1)
$$\mathbf{A} = \mathbf{Q}\mathbf{T}\mathbf{Q}$$

Q should be unitary with the first column of $\mathbf{Q} = \vec{q_1}$ and **T** should be tridiagonal

1. **ITERATION PROCESS**

1.1. Note. λ is a an eigenvalue of **A** if and only if λ is an eigenvalue of **T**. Also, we typically stop after k steps

$$\mathbf{A} \approx \mathbf{Q}(:, 1:k) \mathbf{T}(1:k, 1:k) \mathbf{Q}(:, 1:k)^*$$

1.2. Iteration. Multiply 1 by **Q** from the right:

(2)

Looking at the first column of 2

$$\mathbf{A}\vec{q}_1 = \vec{q}_1 t_{1,1} + \vec{q}_2 t_{2,1}$$
$$\vec{q}_1^* \mathbf{A}\vec{q}_1 = \vec{q}_1^* \vec{q}_1 t_{1,1} + \vec{q}_1^* \vec{q}_2 t_{2,1}$$

 $\mathbf{A}\mathbf{Q}=\mathbf{Q}\mathbf{T}$

Since Q is orthonormal, $\vec{q}_1^*\vec{q}_2 = 0$ and $\vec{q}_1^*\vec{q}_1 = 1$

$$t_{1,1} = \vec{q}_1^* \mathbf{A} \vec{q}_1$$

 $t_{2,1} \vec{q}_2 = \mathbf{A} \vec{q}_1 - t_{1,1} \vec{q}_1$

 $t_{2,1} = \|\vec{r}_1\|$

 $\vec{q}_2 = \frac{\vec{r}_1}{t_{2,1}}$

Set $\vec{r_1} = \mathbf{A}\vec{q_1} - t_{1,1}\vec{q_1}$

T is symmetric so
$$t_{2,1} = t_{1,2}$$
 Looking at the second column of 2

$$\mathbf{A}\vec{q}_2 = \vec{q}_1 t_{1,2} + \vec{q}_2 t_{2,2} + \vec{q}_3 t_{3,2}$$

The left hand side of the equation, and the first two terms of the right hand side of the equation are known. This leaves $\vec{q}_3 t_{3,2}$ as the only unknown

$$\vec{q}_{2}^{*}\mathbf{A}\vec{q}_{2} = t_{2,2}$$
$$\vec{r}_{2} = \vec{q}_{3}t_{3,2} = \mathbf{A}\vec{q}_{2} - t_{1,2}\vec{q}_{1} - t_{2,2}\vec{q}_{2}$$
$$t_{3,2} = \|\vec{r}_{2}\|$$
$$\vec{q}_{3} = \frac{\vec{r}_{2}}{t_{3,2}}$$

Looking at the k^{th} step,

$$\mathbf{A}\vec{q}_{k} = \vec{q}_{k-1}t_{k-1,k} + \vec{q}_{k}t_{k,k} + \vec{q}_{k+1}t_{k+1,k}$$

$$t_{k,k} = \vec{q}_{k}^{*}\mathbf{A}\vec{q}_{k}$$

$$\vec{r}_{k} = \mathbf{A}\vec{q}_{k} - t_{k-1,k}\vec{q}_{k-1} - t_{k,k}\vec{q}_{k}$$

$$t_{k+1,k} = \|\vec{r}_{k}\|$$

$$\vec{q}_{k+1} = \frac{\vec{r}_{k}}{t_{k+1,k}}$$

1.3. Lanczos Iteration as a function. The inputs to the LANCZOS Iteration are as follows: A and $\vec{q_1}$ such that $\|\vec{q_1}\| = 1$

$$t_{1,1} = \vec{q}_1^* \mathbf{A} \vec{q}_1$$

$$\vec{r}_1 = \mathbf{A} \vec{q}_1 - t_{1,1} \vec{q}_1$$

for j = 2, 3, ..., n

$$t_{j-1,j} = \|\vec{r}_{j-1}\|$$

$$\vec{q}_j = \frac{\vec{r}_{j-1}}{t_{j-1,j}}$$

$$t_{j,j} = \vec{q}_j^* \mathbf{A} \vec{q}_j$$

$$\vec{r}_j = \mathbf{A} \vec{q}_j - t_{j-1,j} \vec{q}_{j-1} - t_{j,j} \vec{q}_j$$

end

1.4. Remarks about Q. Claim For any k, $\{\vec{q}_j\}_{j=1}^k$ is an Orthonormal basis for $Span\{\vec{q}_1, \mathbf{A}\vec{q}_1, \dots, \mathbf{A}^{k-1}\vec{q}_1\}$ Sketch of the Proof Obviously true for k = 1. $\mathbf{k} = \mathbf{2}$

$$\vec{q}_2 = \frac{1}{t_{2,1}} (\mathbf{A} \vec{q}_1 - t_{1,1} \vec{q}_1) \in Span\{\vec{q}_1, \mathbf{A} \vec{q}_1\}$$

Note $Span{\vec{q_1}, A\vec{q_1}}$ has dimension 2 k = 3

$$\vec{q_3} = \frac{1}{t_{3,2}} (\mathbf{A}\vec{q_2} - t_{2,1}\vec{q_1} - t_{2,2}\vec{q_2}) \in Span\{\vec{q_1}, \vec{q_2}, \mathbf{A}\vec{q_1}\} \subseteq Span\{\vec{q_1}, \mathbf{A}\vec{q_1}, \mathbf{A}^2\vec{q_1}\}$$

Induction can be used to complete the proof

1.5. Invariant Subspaces. What if $\vec{r}_k = 0$ at some step k. Then $\mathbf{A}\vec{q}_k = \vec{q}_{k-1}t_{k-1,k} + \vec{q}_k t_{k,k}$. Set $V = Span\{\vec{q}_1, \vec{q}_2, \dots, \vec{q}_k\}$. Then V is an invariant subspace of \mathbf{A} . Suppose $\vec{v} \in V \iff \vec{v} = \sum_{j=1}^k c_j \vec{q}_j$

$$\mathbf{A}\vec{v} = \sum_{j=1}^{k} c_j \mathbf{A}\vec{q}_j = c_k \mathbf{A}\vec{q}_k + \sum_{j=1}^{k-1} c_j \mathbf{A}\vec{q}_j$$

 $\mathbf{A}\vec{q}_k \in Span\{\vec{q}_{k+1}, \vec{q}_k\} \subseteq V$ and $\sum_{j=1}^{k-1} c_j \mathbf{A}\vec{q}_j \in V$, so $\mathbf{A}\vec{v} \in V$ We see that \vec{q}_1 lies in an invariant subspace of \mathbf{A} . Suppose $rank(\mathbf{A}) = p$. Suppose \vec{g} is a Gaussian vector and set $\vec{q}_1 = \frac{\vec{g}}{\|\vec{g}\|}$. Let $\{\vec{v}_j\}_{j=1}^p$ be the eigenvectors of \mathbf{A} with eigenvalues λ_j so $\lambda_j \neq 0$

$$\vec{q}_1 = \frac{1}{\|\vec{g}\|} \sum_{j=1}^p c_j \vec{v}_j$$

All coefficients c_j are Gaussian random numbers. But, if you should happen to find $\vec{r}_k = 0$, then you found an invariant subspace which is very nice because now

$$\mathbf{A} = \mathbf{Q}\mathbf{T}\mathbf{Q}^* = \begin{bmatrix} \mathbf{Q}_k \mathbf{Q}_k \end{bmatrix} \begin{bmatrix} \mathbf{T}_{LL} & 0\\ 0 & \mathbf{T}_{RR} \end{bmatrix} \begin{bmatrix} \mathbf{Q}_L^*\\ \mathbf{Q}_L^* \end{bmatrix} = \mathbf{Q}_L \mathbf{T}_{LL} \mathbf{Q}_L^* + \mathbf{Q}_R \mathbf{T}_{RR} \mathbf{Q}_R^*$$

The eigenvalues of \mathbf{T}_{LL} are all eigenvalues of \mathbf{A} . Pick \vec{q}_{k+1} as a random vector that is orthongonal to $\vec{q}_1, \vec{q}_2, \dots, \vec{q}_k$ and proceed.

$$\vec{g} = randn(n, 1)$$
$$\vec{r} = \vec{g} - \sum_{j=1}^{k} (\vec{q}_{j}^{*}\vec{g}) \vec{q}_{j}$$
$$\vec{q}_{k+1} = \frac{\vec{r}}{\|\vec{r}\|}$$

If all you want are eigenvalues (not eigenvectors) , then you only need to store **T** and the last two q-vectors

1.6. **Stability.** The Lanczos procedure is unstable. $t_{j-1,j}$ can be very small. The round-off errors will cause the sequence $\{\vec{q}_j\}_{j=1}^k$ to lose orthogonality as k increases. To fix this, one can store all $\{\vec{q}_j\}$ and explicitly reorthonormalize. Once you compute \vec{r}_j , do

$$\vec{r}_k \leftarrow \vec{r}_k - \sum_{k=1}^{j-1} (\vec{r}_k \vec{q}_j) \vec{q}_j$$