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1. REVIEW: SINGLE-PASS ALGORITHM FOR HERMITIAN MATRICES

This section is a review from class on 02/01/2016. Let A be an n × n Hermitian matrix. Further, define k to be
our target rank and p the oversampling parameter. For notational convenience, let l = k + p.

1.1. Single-Pass Hermitian - Stage A.

1) Draw Gaussian matrix G of size n× l
2) Compute Y = AG, our sampling matrix.
3) Find Q = orth(Y) via QR

Recall:
A ≈ QQ∗AQQ∗. Let C = Q∗AQ. Calculate the eigendecomposition of C to find: C = ÛDÛ

∗
. Then A ≈

QCQ∗ = Q(ÛDÛ
∗
)Q∗. Set U = QÛ, U∗ = Û

∗
Q∗ and A ≈ UDU∗. We find C by solving C(Q∗G) = Q∗Y in

the least squares sense making sure to enforce C∗ = C. Now consider replacing step (3) with the calculation of an
’econ’ SVD on Y. Let Q contain the first k left singular vectors of our factorization and proceed as normal. This
will yield a substantially overdetermined system. The above procedure relies on A being symmetric, how do we
proceed if this is not the case?

2. SINGLE-PASS FOR GENERAL MATRIX

Let A be a real or complex valued m × n matrix. Further, define k to be our target rank and p the oversampling
parameter. For notational convenience, let l = k + p. We aim to retrieve an approximate SVD:

A ≈ U D V∗

m× n m× k k × k k × n

To begin, we will modify ”Stage A” from Section 1.1 to output orthonormal matrices Qc, Qr such that:

A ≈ Qc Qc
∗ A Qr Qr

∗

m× n m× k k ×m m× n n× k k × n

With Qc an approximate basis for the column space of A and Qr an approximate basis for the row space of A. We
will then set C = Q∗

c AQr and proceed in the usual fashion. First let’s justify the means in which we aim to find C.
First, right multiply C by Q∗

r Gc to find: CQ∗
r Gc = Q∗

c AQrQ∗
r Gc = Q∗

c AGc = Q∗
c Yc. Similarly, left multiply C

by G∗
r Qc to find: G∗

r QcC = G∗
r QcQ∗

c AQr = G∗
r AQr = Y∗

r Qr. Keep this in mind when we move to ”Stage B”.

2.1. Single-Pass General - Stage A.

1) Draw Gaussian matrices Gc, Gr of size n× l
2) Compute Yc = AGc, Yr = A∗Gr

3) Find [Qc, , ] = svd(Yc,’econ’), [Qr, , ] = svd(Yr,’econ’)
4) Qc = Qc(:, 1 : k), Qr = Qr(:, 1 : k)

2.2. Single-Pass General - Stage B.

5) Determine a k × k matrix C by solving:

C (Q∗
r Gc) = Q∗

c Yc and (G∗
r Qr) C = Y∗

r Qr

k × k k × l k × l l × k k × k l × k

in the least squares sense. (Note: There are 2k2 equations for k2 unknowns which represents a system that
is very overdetermined.)

6) Compute SVD: C = ÛDV̂∗

7) Set U = QcÛ, V = QrV̂

It should be noted that the General case reduces to the Hermitian case given a suitable matrix A. A natural follow
up questions targets the reduction of asymptotic complexity. Can we reduce the FLOP count, say from O(mnk),
to O(mnlog(k))?
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3. REDUCTION OF ASYMPTOTIC COMPLEXITY

3.1. Review of RSVD. Let A be a dense m × n matrix that fits in RAM, designate k, p, l in the usual fashion.
When computing the RSVD of A, there are two FLOP intensive steps that require O(mnk) operations (Please see
course notes from 1/29/2016 for more detail). We will first concentrate on accelerating the computation of Y = AG
with G an n× l Gaussian matrix. To do so, consider replacing G by a new random matrix, Ω with a few (seemingly
contradictory) properties. These are:

• Ω has enough structure to ensure that AΩ can be evaluated in (mnlog(k)) flops.
• Ω is random enough to be reasonably certain that the columns of Y = AΩ approximately span the column

space of A.

How can such an Ω be found? Are there any examples of one?

3.2. Example of Ω: Let F be the n× n DFT and note F∗F = I (F is called a ”rotation”). Define D to be diagonal
with random entries and S a subsampling matrix. Let Ω be:

Ω = D F S∗

n× l n× n n× n n× l

We are one step closer to the mythical Ω. Further details in subsequent lectures.
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