1. Review: Single-Pass Algorithm for Hermitian Matrices

This section is a review from class on $\mathbf{0 2 / 0 1 / 2 0 1 6}$. Let \mathbf{A} be an $n \times n$ Hermitian matrix. Further, define k to be our target rank and p the oversampling parameter. For notational convenience, let $l=k+p$.

1.1. Single-Pass Hermitian - Stage A.

1) Draw Gaussian matrix \mathbf{G} of size $n \times l$
2) Compute $\mathbf{Y}=\mathbf{A G}$, our sampling matrix.
3) Find $\mathbf{Q}=\operatorname{orth}(\mathbf{Y})$ via $\mathbf{Q R}$

Recall:
$\mathbf{A} \approx \mathbf{Q Q}^{*} \mathbf{A} \mathbf{Q} \mathbf{Q}^{*}$. Let $\mathbf{C}=\mathbf{Q}^{*} A \mathbf{Q}$. Calculate the eigendecomposition of \mathbf{C} to find: $\mathbf{C}=\hat{\mathbf{U}} \mathbf{D} \hat{\mathbf{U}}^{*}$. Then $\mathbf{A} \approx$ $\mathbf{Q C Q}^{*}=\mathbf{Q}\left(\hat{\mathbf{U}} \mathbf{D} \hat{\mathbf{U}}^{*}\right) \mathbf{Q}^{*}$. Set $\mathbf{U}=\mathbf{Q} \hat{\mathbf{U}}, \mathbf{U}^{*}=\hat{\mathbf{U}}^{*} \mathbf{Q}^{*}$ and $\mathbf{A} \approx \mathbf{U D} \mathbf{U}^{*}$. We find \mathbf{C} by solving $\mathbf{C}\left(\mathbf{Q}^{*} \mathbf{G}\right)=\mathbf{Q}^{*} \mathbf{Y}$ in the least squares sense making sure to enforce $\mathbf{C}^{*}=\mathbf{C}$. Now consider replacing step (3) with the calculation of an 'econ' SVD on \mathbf{Y}. Let \mathbf{Q} contain the first k left singular vectors of our factorization and proceed as normal. This will yield a substantially overdetermined system. The above procedure relies on \mathbf{A} being symmetric, how do we proceed if this is not the case?

2. Single-Pass for General Matrix

Let \mathbf{A} be a real or complex valued $m \times n$ matrix. Further, define k to be our target rank and p the oversampling parameter. For notational convenience, let $l=k+p$. We aim to retrieve an approximate SVD:

$$
\underset{m \times n}{\mathbf{A}} \approx \underset{m \times k}{\mathbf{U}} \underset{k \times k}{\mathbf{D}} \underset{k \times n}{\mathbf{V}^{*}}
$$

To begin, we will modify "Stage A" from Section 1.1 to output orthonormal matrices $\mathbf{Q}_{\mathbf{c}}, \mathbf{Q}_{\mathbf{r}}$ such that:

With $\mathbf{Q}_{\mathbf{c}}$ an approximate basis for the column space of \mathbf{A} and $\mathbf{Q}_{\mathbf{r}}$ an approximate basis for the row space of \mathbf{A}. We will then set $\mathbf{C}=\mathbf{Q}_{\mathbf{c}}^{*} \mathbf{A} \mathbf{Q}_{r}$ and proceed in the usual fashion. First let's justify the means in which we aim to find \mathbf{C}. First, right multiply \mathbf{C} by $\mathbf{Q}_{\mathbf{r}}^{*} \mathbf{G}_{\mathrm{c}}$ to find: $\mathbf{C} \mathbf{Q}_{r}^{*} \mathbf{G}_{\mathrm{c}}=\mathbf{Q}_{\mathrm{c}}^{*} \mathbf{A} \mathbf{Q}_{\mathbf{r}} \mathbf{Q}_{\mathrm{r}}^{*} \mathbf{G}_{\mathbf{c}}=\mathbf{Q}_{\mathrm{c}}^{*} \mathbf{A} \mathbf{G}_{\mathrm{c}}=\mathbf{Q}_{\mathrm{c}}^{*} \mathbf{Y}_{\mathbf{c}}$. Similarly, left multiply \mathbf{C} by $\mathbf{G}_{\mathbf{r}}^{*} \mathbf{Q}_{\mathbf{c}}$ to find: $\mathbf{G}_{\mathbf{r}}^{*} \mathbf{Q}_{\mathbf{c}} \mathbf{C}=\mathbf{G}_{\mathbf{r}}^{*} \mathbf{Q}_{\mathbf{c}} \mathbf{Q}_{\mathbf{c}}^{*} \mathbf{A} \mathbf{Q}_{\mathbf{r}}=\mathbf{G}_{\mathbf{r}}^{*} \mathbf{A} \mathbf{Q}_{\mathbf{r}}=\mathbf{Y}_{\mathbf{r}}^{*} \mathbf{Q}_{\mathbf{r}}$. Keep this in mind when we move to "Stage B ".

2.1. Single-Pass General - Stage A.

1) Draw Gaussian matrices $\mathbf{G}_{\mathbf{c}}, \mathbf{G}_{\mathbf{r}}$ of size $n \times l$
2) Compute $\mathbf{Y}_{\mathbf{c}}=\mathbf{A G _ { \mathbf { c } }}, \mathbf{Y}_{\mathbf{r}}=\mathbf{A}^{*} \mathbf{G}_{\mathbf{r}}$
3) Find $\left[\mathbf{Q}_{\mathbf{c}},,\right]=\operatorname{svd}\left(\mathbf{Y}_{\mathbf{c}}\right.$, 'econ' $),\left[\mathbf{Q}_{\mathbf{r}},,\right]=\operatorname{svd}\left(\mathbf{Y}_{\mathbf{r}}\right.$, 'econ' $)$
4) $\mathbf{Q}_{\mathbf{c}}=\mathbf{Q}_{\mathbf{c}}(:, 1: k), \mathbf{Q}_{\mathbf{r}}=\mathbf{Q}_{\mathbf{r}}(:, 1: k)$
2.2. Single-Pass General - Stage B.
5) Determine a $k \times k$ matrix \mathbf{C} by solving:

$$
\underset{k \times k}{\mathbf{C}} \underset{k \times l}{\left(\mathbf{Q}_{\mathbf{r}}^{*} \mathbf{G}_{\mathbf{c}}\right)}=\underset{k \times l}{\mathbf{Q}_{\mathbf{c}}^{*} \mathbf{Y}_{\mathbf{c}}} \underset{k \times l}{\text { and }} \underset{l \times k}{\left(\mathbf{G}_{\mathbf{r}}^{*} \mathbf{Q}_{\mathbf{r}}\right)} \underset{k \times k}{\mathbf{C}}=\underset{l \times k}{\mathbf{Y}_{\mathbf{r}}^{*} \mathbf{Q}_{\mathbf{r}}}
$$

in the least squares sense. (Note: There are $2 k^{2}$ equations for k^{2} unknowns which represents a system that is very overdetermined.)
6) Compute SVD: $\mathbf{C}=\hat{\mathbf{U}} \mathbf{D} \hat{\mathbf{V}}^{*}$
7) $\operatorname{Set} \mathbf{U}=\mathbf{Q}_{\mathbf{c}} \hat{\mathbf{U}}, \mathbf{V}=\mathbf{Q}_{\mathbf{r}} \hat{\mathbf{V}}$

It should be noted that the General case reduces to the Hermitian case given a suitable matrix \mathbf{A}. A natural follow up questions targets the reduction of asymptotic complexity. Can we reduce the FLOP count, say from $O(m n k)$, to $O(m n l o g(k))$?

3. Reduction of Asymptotic Complexity

3.1. Review of RSVD. Let A be a dense $m \times n$ matrix that fits in RAM, designate k, p, l in the usual fashion. When computing the RSVD of A, there are two FLOP intensive steps that require $O(m n k)$ operations (Please see course notes from 1/29/2016 for more detail). We will first concentrate on accelerating the computation of $\mathbf{Y}=\mathbf{A G}$ with \mathbf{G} an $n \times l$ Gaussian matrix. To do so, consider replacing \mathbf{G} by a new random matrix, $\boldsymbol{\Omega}$ with a few (seemingly contradictory) properties. These are:

- $\boldsymbol{\Omega}$ has enough structure to ensure that $\mathbf{A} \boldsymbol{\Omega}$ can be evaluated in $(\operatorname{mnlog}(k))$ flops.
- Ω is random enough to be reasonably certain that the columns of $\mathbf{Y}=\mathbf{A} \Omega$ approximately span the column space of \mathbf{A}.

How can such an Ω be found? Are there any examples of one?
3.2. Example of Ω : Let \mathbf{F} be the $n \times n$ DFT and note $\mathbf{F} * \mathbf{F}=\mathbf{I}(\mathbf{F}$ is called a "rotation"). Define \mathbf{D} to be diagonal with random entries and \mathbf{S} a subsampling matrix. Let $\boldsymbol{\Omega}$ be:

$$
\underset{n \times l}{\boldsymbol{\Omega}}=\begin{array}{ccc}
\mathbf{D} & \mathbf{F} & \mathbf{S}^{*} \\
n \times n & n \times n & n \times l
\end{array}
$$

We are one step closer to the mythical Ω. Further details in subsequent lectures.

