1. REVIEW: SINGLE-PASS ALGORITHM FOR HERMITIAN MATRICES

This section is a review from class on 02/01/2016. Let A be an $n \times n$ Hermitian matrix. Further, define k to be our target rank and p the oversampling parameter. For notational convenience, let l = k + p.

1.1. Single-Pass Hermitian - Stage A.

- 1) Draw Gaussian matrix **G** of size $n \times l$
- 2) Compute $\mathbf{Y} = \mathbf{AG}$, our sampling matrix.
- 3) Find $\mathbf{Q} = orth(\mathbf{Y})$ via QR

Recall:

 $\mathbf{A} \approx \mathbf{Q}\mathbf{Q}^*\mathbf{A}\mathbf{Q}\mathbf{Q}^*$. Let $\mathbf{C} = \mathbf{Q}^*A\mathbf{Q}$. Calculate the eigendecomposition of \mathbf{C} to find: $\mathbf{C} = \hat{\mathbf{U}}\mathbf{D}\hat{\mathbf{U}}^*$. Then $\mathbf{A} \approx \mathbf{Q}\mathbf{C}\mathbf{Q}^* = \mathbf{Q}(\hat{\mathbf{U}}\mathbf{D}\hat{\mathbf{U}}^*)\mathbf{Q}^*$. Set $\mathbf{U} = \mathbf{Q}\hat{\mathbf{U}}$, $\mathbf{U}^* = \hat{\mathbf{U}}^*\mathbf{Q}^*$ and $\mathbf{A} \approx \mathbf{U}\mathbf{D}\mathbf{U}^*$. We find \mathbf{C} by solving $\mathbf{C}(\mathbf{Q}^*\mathbf{G}) = \mathbf{Q}^*\mathbf{Y}$ in the least squares sense making sure to enforce $\mathbf{C}^* = \mathbf{C}$. Now consider replacing step (3) with the calculation of an 'econ' SVD on \mathbf{Y} . Let \mathbf{Q} contain the first *k* left singular vectors of our factorization and proceed as normal. This will yield a substantially overdetermined system. The above procedure relies on \mathbf{A} being symmetric, how do we proceed if this is not the case?

2. SINGLE-PASS FOR GENERAL MATRIX

Let **A** be a real or complex valued $m \times n$ matrix. Further, define k to be our target rank and p the oversampling parameter. For notational convenience, let l = k + p. We aim to retrieve an approximate SVD:

$$\begin{array}{cccc} \mathbf{A} &\approx & \mathbf{U} & \mathbf{D} & \mathbf{V}^* \\ m \times n & & m \times k & k \times k & k \times n \end{array}$$

To begin, we will modify "Stage A" from Section 1.1 to output orthonormal matrices Q_c, Q_r such that:

With Q_c an approximate basis for the column space of A and Q_r an approximate basis for the row space of A. We will then set $C = Q_c^* A Q_r$ and proceed in the usual fashion. First let's justify the means in which we aim to find C. First, right multiply C by $Q_r^* G_c$ to find: $CQ_r^* G_c = Q_c^* A Q_r Q_r^* G_c = Q_c^* A G_c = Q_c^* Y_c$. Similarly, left multiply C by $G_r^* Q_c C = G_r^* Q_c Q_c^* A Q_r = G_r^* A Q_r = Y_r^* Q_r$. Keep this in mind when we move to "Stage B".

2.1. Single-Pass General - Stage A.

- 1) Draw Gaussian matrices $\mathbf{G_c}$, $\mathbf{G_r}$ of size $n \times l$
- 2) Compute $\mathbf{Y}_{\mathbf{c}} = \mathbf{A}\mathbf{G}_{\mathbf{c}}, \mathbf{Y}_{\mathbf{r}} = \mathbf{A}^{*}\mathbf{G}_{\mathbf{r}}$
- 3) Find $[\mathbf{Q}_{\mathbf{c}},] = \operatorname{svd}(\mathbf{Y}_{\mathbf{c}}, \operatorname{econ}'), [\mathbf{Q}_{\mathbf{r}},] = \operatorname{svd}(\mathbf{Y}_{\mathbf{r}}, \operatorname{econ}')$
- 4) $\mathbf{Q_c} = \mathbf{Q_c}(:, 1:k), \mathbf{Q_r} = \mathbf{Q_r}(:, 1:k)$

2.2. Single-Pass General - Stage B.

5) Determine a $k \times k$ matrix **C** by solving:

$$\begin{array}{ccc} \mathsf{C} & (\mathsf{Q}_{\mathsf{r}}^*\mathsf{G}_{\mathsf{c}}) &= & \mathsf{Q}_{\mathsf{c}}^*\mathsf{Y}_{\mathsf{c}} & \text{and} & (\mathsf{G}_{\mathsf{r}}^*\mathsf{Q}_{\mathsf{r}}) & \mathsf{C} &= & \mathsf{Y}_{\mathsf{r}}^*\mathsf{Q}_{\mathsf{r}} \\ k \times k & & k \times k & & l \times k \end{array}$$

in the least squares sense. (Note: There are $2k^2$ equations for k^2 unknowns which represents a system that is very overdetermined.)

- 6) Compute SVD: $\mathbf{C} = \hat{\mathbf{U}} \mathbf{D} \hat{\mathbf{V}}^*$
- 7) Set $\mathbf{U} = \mathbf{Q}_{\mathbf{r}} \hat{\mathbf{U}}, \mathbf{V} = \mathbf{Q}_{\mathbf{r}} \hat{\mathbf{V}}$

It should be noted that the General case reduces to the Hermitian case given a suitable matrix **A**. A natural follow up questions targets the reduction of asymptotic complexity. Can we reduce the FLOP count, say from O(mnk), to O(mnlog(k))?

3. REDUCTION OF ASYMPTOTIC COMPLEXITY

3.1. Review of RSVD. Let A be a dense $m \times n$ matrix that fits in RAM, designate k, p, l in the usual fashion. When computing the RSVD of A, there are two FLOP intensive steps that require O(mnk) operations (Please see course notes from 1/29/2016 for more detail). We will first concentrate on accelerating the computation of $\mathbf{Y} = \mathbf{AG}$ with G an $n \times l$ Gaussian matrix. To do so, consider replacing G by a new random matrix, Ω with a few (seemingly contradictory) properties. These are:

- Ω has enough structure to ensure that $A\Omega$ can be evaluated in (mnlog(k)) flops.
- Ω is random enough to be reasonably certain that the columns of $\mathbf{Y} = \mathbf{A}\Omega$ approximately span the column space of \mathbf{A} .

How can such an Ω be found? Are there any examples of one?

3.2. Example of Ω : Let **F** be the $n \times n$ DFT and note $F^*F = I$ (**F** is called a "rotation"). Define **D** to be diagonal with random entries and **S** a subsampling matrix. Let Ω be:

$$\begin{array}{rcl} \boldsymbol{\Omega} & = & \boldsymbol{\mathsf{D}} & \boldsymbol{\mathsf{F}} & \boldsymbol{\mathsf{S}}^* \\ n \times l & n \times n & n \times n & n \times l \end{array}$$

We are one step closer to the mythical Ω . Further details in subsequent lectures.