1. Finding \mathbf{Q}_{j} Such that $\left\|\mathbf{Q}_{j} \mathbf{Q}_{j}^{*} \mathbf{A}-\mathbf{A}\right\|<\epsilon$ IS Guaranteed

A shortcoming of the last algorithm discussed in the previous lecture is that the resulting matrix \mathbf{Q} is not guaranteed to satisfy $\left\|\mathbf{Q} \mathbf{Q}^{*} \mathbf{A}-\mathbf{A}\right\|<\epsilon$; it merely achieves this requirement with a high degree of probability. In the case that we require certainty in our result, another approach is required. One such approach is given by the following algorithm:

- Algorithm 1
- Given inputs \mathbf{A} and $\epsilon>0$, set $\mathbf{A}_{0}=\mathbf{A}, \mathbf{B}_{0}=[\quad], \mathbf{Q}_{0}=[\quad]$.
- for $j=1,2, \ldots$
* Choose an i.i.d. $\mathbf{w} \in \mathbb{R}^{n}$, set $\mathbf{q}_{j}=\mathbf{A w} /\|\mathbf{A w}\|$.
* Set $\mathbf{b}_{j}=\mathbf{q}_{j}^{*} \mathbf{A}_{j-1}$.
* Set $\mathbf{Q}_{j}=\left[\begin{array}{ll}\mathbf{Q}_{j-1} & \mathbf{q}_{j}\end{array}\right]$.
* Set $\mathbf{B}_{j}=\left[\begin{array}{c}\mathbf{B}_{j-1} \\ \mathbf{b}_{j}\end{array}\right]$.
* Set $\mathbf{A}_{j}=\mathbf{A}_{j-1}-\mathbf{q}_{j} \mathbf{b}_{j}=\mathbf{A}_{j-1}-\mathbf{q}_{j} \mathbf{q}_{j}^{*} \mathbf{A}_{j-1}$.
* If $\left\|\mathbf{A}_{j}\right\|<\epsilon$, exit.

We will next show that the algorithm "works," that is, we will show that $\mathbf{A}_{j}=\mathbf{Q}_{j} \mathbf{Q}_{j}^{*} \mathbf{A}-\mathbf{A}$, so when we terminate the routine (i.e. when $\left\|\mathbf{A}_{j}\right\|<\epsilon$), we also have $\left\|\mathbf{Q}_{j} \mathbf{Q}_{j}^{*} \mathbf{A}-\mathbf{A}\right\|<\epsilon$. We will do this by induction.

Iteration 1. Here we have $\mathbf{Q}_{1}=\left[\mathbf{q}_{1}\right]$ and $\mathbf{A}_{0}=\mathbf{A}$, so

$$
\mathbf{A}_{1}=\mathbf{A}_{0}-\mathbf{q}_{1} \mathbf{q}_{1}^{*} \mathbf{A}_{0}=\left(\mathbf{I}-\mathbf{Q}_{1} \mathbf{Q}^{*}\right) \mathbf{A} .
$$

Iteration $j /$ Induction Step. Assume we have $\mathbf{A}_{j}=\left(\mathbf{I}-\mathbf{Q}_{j} \mathbf{Q}_{j}^{*}\right) \mathbf{A}$.

$$
\mathbf{A}_{j+1}=\mathbf{A}_{j}-\mathbf{q}_{j+1} \mathbf{q}^{*} \mathbf{A}_{j}=\left(\mathbf{A}-\mathbf{Q}_{j} \mathbf{Q}_{j}^{*} \mathbf{A}\right)-\mathbf{q}_{j+1} \mathbf{q}_{j+1}^{*}\left(\mathbf{A}-\mathbf{Q}_{j} \mathbf{Q}_{j}^{*} \mathbf{A}\right)
$$

Now since \mathbf{q}_{j+1} is orthogonal to the columns of $\mathbf{Q}_{j}, \mathbf{q}_{j+1}^{*} \mathbf{Q}_{j}=\mathbf{0}$. Therefore

$$
\begin{aligned}
\left(\mathbf{A}-\mathbf{Q}_{j} \mathbf{Q}_{j}^{*} \mathbf{A}\right)-\mathbf{q}_{j+1} \mathbf{q}_{j+1}^{*}\left(\mathbf{A}-\mathbf{Q}_{j} \mathbf{Q}_{j}^{*} \mathbf{A}\right) & =\mathbf{A}-\mathbf{Q}_{j} \mathbf{Q}_{j}^{*} \mathbf{A}-\mathbf{q}_{j+1} \mathbf{q}_{j+1}^{*} \mathbf{A} \\
& =\left(\mathbf{I}-\left(\mathbf{Q}_{j} \mathbf{Q}_{j}^{*}+\mathbf{q}_{j+1} \mathbf{q}_{j+1}^{*}\right)\right) \mathbf{A} .
\end{aligned}
$$

Then since

$$
\mathbf{Q}_{j+1} \mathbf{Q}_{j+1}^{*}=\left[\begin{array}{c}
\mathbf{Q}_{j} \\
\mathbf{q}_{j+1}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{Q}_{j}^{*} & \mathbf{q}_{j+1}^{*}
\end{array}\right]=\mathbf{Q}_{j} \mathbf{Q}_{j}^{*}+\mathbf{q}_{j+1} \mathbf{q}_{j+1}^{*},
$$

we have that

$$
\begin{equation*}
\mathbf{A}_{j+1}=\left(\mathbf{I}-\mathbf{Q}_{j+1} \mathbf{Q}_{j+1}^{*}\right) \mathbf{A} . \tag{1}
\end{equation*}
$$

2. Blocking Algorithm 1

One disadvantage of Algorithm 1 is that the matrix \mathbf{Q} is updated one vector at a time, so the algorithm relies mostly on matrix-vector products rather than the more efficient matrix-matrix products. The following modification of Algorithm 1 remedies this problem.

- Algorithm 2

$-\operatorname{Set} \mathbf{A}_{0}=\mathbf{A}, \mathbf{B}_{0}=[], \mathbf{Q}_{0}=[]$.

- $\operatorname{for} j=1,2, \ldots$
* Set $\hat{\mathbf{Q}}_{j}=\operatorname{qr}\left(\mathbf{A}_{j-1} \boldsymbol{\Omega}_{j-1}, 0\right)$, where $\Omega \in \mathbb{R}^{n \times b}$ matrix whose entries are i.i.d. Gaussian random variables, where b is some block size.
$* \operatorname{Set} \hat{\mathbf{B}}_{j}=\hat{\mathbf{Q}}_{j}^{*} \mathbf{A}_{j-1}$.
$* \operatorname{Set} \mathbf{A}_{j}=\mathbf{A}_{j-1}-\hat{\mathbf{Q}}_{j} \hat{\mathbf{B}}_{j}$.
$* \operatorname{Set} \mathbf{B}_{j}=\left[\begin{array}{ll}\mathbf{B}_{j-1}^{*} & \hat{\mathbf{B}}_{j}^{*}\end{array}\right], \mathbf{Q}_{j}=\left[\begin{array}{ll}\mathbf{Q}_{j-1} & \hat{\mathbf{Q}}_{j}\end{array}\right]$.
* If $\left\|\mathbf{A}_{j}\right\|<\epsilon$, exit.

We would again like to show that the algorithm gives the expected result, which means we must show that $\mathbf{A}_{j}=$ $\left(\mathbf{I}-\mathbf{Q}_{j} \mathbf{Q}_{j}^{*}\right) \mathbf{A}$.
We will first demonstrate that $\hat{\mathbf{Q}}_{j}^{*} \hat{\mathbf{Q}}_{k}=\mathbf{0}$ for $k=1, \ldots, j-1$. The desired result will then follow. We have that $\operatorname{Ran}\left(\hat{\mathbf{Q}}_{j}\right)=\operatorname{Ran}\left(\mathbf{A}_{j-1} \boldsymbol{\Omega}\right) \subseteq \operatorname{Ran}\left(\mathbf{A}_{j-1}\right)=\operatorname{Ran}\left(\left(\mathbf{I}-\sum_{k=1}^{j-1} \hat{\mathbf{Q}}_{k} \hat{\mathbf{Q}}_{k}^{*}\right) \mathbf{A}\right) \subseteq \operatorname{Ran}\left(\mathbf{I}-\sum_{k=1}^{j-1} \hat{\mathbf{Q}}_{k} \hat{\mathbf{Q}}_{k}^{*}\right)=$ $\operatorname{Ran}\left(\sum_{k=1}^{j-1} \hat{\mathbf{Q}}_{k} \hat{\mathbf{Q}}_{k}^{*}\right)^{\perp}$. Thus $\hat{\mathbf{Q}}_{j}^{*} \hat{\mathbf{Q}}_{k}=\mathbf{0}$ for $k=1, \ldots, j-1$.
Now we have that

$$
\begin{aligned}
\mathbf{A}_{j} & =\left(\mathbf{I}-\hat{\mathbf{Q}}_{j} \hat{\mathbf{Q}}_{j}^{*}\right) \mathbf{A}_{j-1} \\
& =\left(\mathbf{I}-\hat{\mathbf{Q}}_{j} \hat{\mathbf{Q}}_{j}^{*}\right)\left(\mathbf{I}-\hat{\mathbf{Q}}_{j-1} \hat{\mathbf{Q}}_{j-1}^{*}\right) \mathbf{A}_{j-2} \\
& =\ldots=\left(\mathbf{I}-\hat{\mathbf{Q}}_{j} \hat{\mathbf{Q}}_{j}^{*}-\hat{\mathbf{Q}}_{j-1} \hat{\mathbf{Q}}_{j-1}^{*}-\ldots-\hat{\mathbf{Q}}_{1} \hat{\mathbf{Q}}_{1}^{*}\right) \mathbf{A} \\
& =\left(\mathbf{I}-\mathbf{Q}_{j} \mathbf{Q}_{j}^{*}\right) \mathbf{A} .
\end{aligned}
$$

