1 Subspaces and Rank-Deficient Matrices

Let A be an $m \times n$ matrix of $\operatorname{rank} k<\min (m, n)$.

- $A: X \rightarrow Y, X=\mathbb{R}^{n}$ and $Y=\mathbb{R}^{m}$ with decomposition $X=X_{1} \oplus X_{2}, Y=$ $Y_{1} \oplus Y_{2}$.
- $X_{1}=\operatorname{row}(A), X_{2}=\operatorname{null}(A)=X_{1}^{\perp}$ and $Y_{1}=\operatorname{col}(A), Y_{2}=Y_{1}^{\perp}$
- $\operatorname{dim}\left(X_{1}\right)=\operatorname{dim}\left(Y_{1}\right)=k, \operatorname{dim}\left(X_{2}\right)=n-k$, and $\operatorname{dim}\left(Y_{2}\right)=m-k$
- X_{1} is the space spanned by the rows of A. Thus, $A x=0 \Longleftrightarrow x \perp$ every row of A.
- Given $x \in X$, we can write $x=x_{1}+x_{2}$ with $x_{1} \in X_{1}, x_{2} \in X_{2}$. Then, $A x=A x_{1}+A x_{2}=A x_{1}$ because $x_{2} \in \operatorname{null}(A)$. Therefore, A acts only on x_{1} and A maps X_{1} to Y_{1}.

Suppose $y \in Y$ is given where $y=y_{1}+y_{2}$. Consider the equation

$$
\begin{equation*}
A x=y \tag{1}
\end{equation*}
$$

(1) has a solution $\Longleftrightarrow y \in Y_{1}$ (so $y_{2}=0$). If z is a solution to $A z=y$ then $z+u$ is another solution for any $u \in X_{2}$.

1.1 Connection to SVD

Let $A=U_{1} D_{1} V_{1}^{*}$ where A is $m \times n, U_{1}$ is $m \times k, D_{1}$ is $k \times k$ and V_{1}^{*} is $k \times n$.

- The columns of U_{1} form an orthonormal basis for Y_{1}.
- The columns of V_{1} form an orthonormal basis for X_{1}.
- Given $x \in X$, set $x_{1}=V_{1} V_{1}^{*} x$ where $V_{1} V_{1}^{*}$ is the projection operator onto the subspace X_{1}.
- Similarly, $x_{2}=x-x_{1}=\left(I-V_{1} V_{1}^{*}\right) x$ where $\left(I-V_{1} V_{1}^{*}\right)$ is the projection operator onto X_{2}.
- Given $y \in Y$, set $y_{1}=U_{1} U_{1}^{*} y$, then $y_{2}=y-y_{1}=\left(I-U_{1} U_{1}^{*}\right) y$ where $U_{1} U_{1}^{*}$ and $\left(I-U_{1} U_{1}^{*}\right)$ are the projection operators onto Y_{1} and Y_{2} respectively.

Consider the full SVD

$$
A=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{cc}
D_{1} & 0 \tag{2}\\
0 & 0
\end{array}\right]\left[\begin{array}{l}
V_{1}^{*} \\
V_{2}^{*}
\end{array}\right]
$$

and equation (1). Then, $A x=U D V^{*} x=y$. Since U is unitary (or $U^{*} U=I$) we have $D V^{*} x=U^{*} y$ so

$$
\left[\begin{array}{cc}
D_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
V_{1}^{*} x \\
V_{2}^{*} x
\end{array}\right]=\left[\begin{array}{c}
U_{1}^{*} y \\
U_{2}^{*} y
\end{array}\right]
$$

This leads to the system of equations:

$$
\left\{\begin{array}{l}
U_{1}^{*} y=D_{1} V_{1}^{*} x \tag{3}\\
U_{2}^{*} y=0
\end{array}\right.
$$

From (3), we know there exists a solution $\Longleftrightarrow U_{2}^{*} y=0 \Longleftrightarrow y \in Y_{2}$.
Since D is $k \times k$ (recall A is rank $k<\min (m, n)), D$ is invertible and

$$
V_{1}^{*} x=D_{1}^{-1} U_{1}^{*} y
$$

The Least Squares Solution is then $x=V_{1} D_{1}^{-1} U_{1}^{*} y$.

1.1.1 Least Squares Solution

Set $\hat{x}=V_{1} D_{1}^{-1} U_{1}^{*} y$. Then

1. $\|A \hat{x}-y\|=\left\|U_{2}^{*} y\right\|=\left\|y_{2}\right\|=\inf _{x \in \mathbb{R}^{n}}\|A x-y\|$.
2. Among all $x \in \mathbb{R}^{n}$ such that $\|A x-y\|$ is minimal, \hat{x} is the shortest vector.

The matrix $A^{\dagger}=V_{1} D_{1}^{-1} U_{1}^{*}$ is the "Moore-Penrose" Inverse. If A is square and full rank, then $A^{\dagger}=A^{-1}$.

Consider the QR Factorization

$$
A P=\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]\left[\begin{array}{cc}
R_{11} & R_{12} \tag{4}\\
0 & 0
\end{array}\right]
$$

Then

$$
A x=y \Longleftrightarrow Q R P^{*} x=y \Longleftrightarrow R P^{*}=Q^{*} y \Longleftrightarrow\left[\begin{array}{cc}
R_{11} & R_{12} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{p} \\
x_{n}
\end{array}\right]=\left[\begin{array}{l}
Q_{1}^{*} y \\
Q_{2}^{*} y
\end{array}\right],
$$

where x_{p} are the k-number of pivoting coefficients and x_{n} are the $n-k$ "nonpivoting" coefficients corresponding to the product $P^{*} x$. From the above equivalence statements, we have $\operatorname{col}(A)=\operatorname{col}\left(Q_{1}\right)$ and

$$
\inf _{x \in \mathbb{R}^{n}}\|A x-y\|=\left\|Q_{2}^{*} y\right\|=\left\|y_{2}\right\|=\left\|\left(I-Q_{1} Q_{1}^{*}\right) y\right\|
$$

which minimizes the residual. Furthermore, $R_{11} x_{p}+R_{12} x_{n}=Q_{1}^{*} y$. Setting $x_{p}=$ $R_{11}^{-1} Q_{1}^{*} y$ and $x_{n}=0$, we have

$$
x=P\left[\begin{array}{c}
x_{p} \\
0
\end{array}\right]
$$

which is the most sparse solution, NOT necessarily the shortest.

2 The "Two-Stage" Approach to Low Rank Approximation

Let A be a $m \times n$ matrix of rank k. Suppose Q is an $m \times k$ matrix whose columns form an orthonormal basis for $\operatorname{col}(A)$. We can then easily compute an SVD of A :

1. $A=Q Q^{*} A$ since $\operatorname{col}(A)=\operatorname{col}(Q)$.
2. Set $B=Q^{*} A$, then $A=Q B$ where B is $k \times n$ and Q is $m \times k$ to get a low rank factor of A.
3. Compute the full SVD of B, so $A=Q B=Q \hat{U} D V^{*}$.
4. Let $Q \hat{U}=U$ (because the product of two unitary matrices is a unitary matrix). Then $\mathrm{A}=U D V^{*}$ and we have the SVD of A.

We needed only $\approx k^{2}(m+n)$ FLOPS, and a matrix-matrix product $B=Q^{*} A$.
Question: How do we find Q ?

