1 Recall the RSVD

1. $G=\operatorname{randn}(\mathrm{n}, \mathrm{k}+\mathrm{p})$
2. $Y=A G$, where A is $m \times n, G$ is $n \times(k+p)$
3. $[Q, \sim, \sim]=\operatorname{qr}(Y, 0)$, where Y is $m \times(k+p)$
4. $B=Q^{*} A$
5. $[$ Uhat, $D, V]=\operatorname{svd}(B$, 'econ')
6. $U=$ QUhat, where Uhat is $(k+p) \times(k+p)$
7. (Truncate)

2 Computational Costs

2.1 Environment 1: A fits in RAM

Traditional flop count is (sort of) a relevant measure. We make the following estimates:

- Cost of matrix-matrix multiply of matrices of dimensions i, j, k is

$$
T \approx C_{m m} i j k
$$

$C=A B$, where C is $i \times k, A$ is $i \times j$ and B is $j \times k$.

- Cost of QR/SVD Factorization of matrix of size $i \times j$ is

$$
\begin{aligned}
T_{q r} & \approx C_{q r} i j \min (i, j) \\
T_{s v d} & \approx C_{s v d} i j \min (i, j)
\end{aligned}
$$

Assume the number of extra samples p is small, and can be ignored. Then, the cost of the steps of the RSVD are:
2. $\sim n k \quad$ small so ignore!
3. $C_{m m} m n k$
4. $C_{q r} m k^{2}$
5. $C_{m m} m n k$
6. $C_{s v d} n k^{2}$
7. $C_{m m} m k^{2}$

So $T_{r s v d} \approx C_{m m}\left(2 m n k+m k^{2}\right)+C_{q r} m k^{2}+C_{s v d} n k^{2}$. The asymptotically dominant term is $m n k$ since $k<\min (m, n)$, so crudely $T_{r s v d} \sim m n k$.

2.2 Environment 2: A is dense and stored on a hard drive

A is stored "out of core." Assume k is small enough that G, Y, Q, B, U, V, D all fit in RAM. We have $O(k(m+n))$ RAM but not $O(m n)$, so A does not fit.

In this case, the time required to read A from disk dominates. So a relevant estimate would be

$$
T_{r s v d} \approx 2 *(\text { cost of reading } A)+C_{m m} m k^{2}+C_{q r} m k^{2}+C_{s v d} n k^{2}
$$

where the cost of reading A depends on the bandwidth of the machine. The CPU will be idle most of the time as data is being moved for computation.

Note: The two reads come from

1. $Y=A G$
2. $B=Q^{*} A$

2.3 Environment 3: A and A^{*} can rapidly be applied to a vector or matrix

Let A be a $m \times n$ matrix. Let X_{1} be $m \times r$ and X_{2} be $n \times r$. Suppose that the cost of evaluating $A X_{1}$ is $\approx C_{1} r$ and $A^{*} X_{2}$ is $\approx C_{2} r$.

In Environment 1, we had $C_{1}=C_{m m} m n$. If A is sparse, then $C_{1} \ll C_{m m} m n$. In this case,

$$
T_{r s v d} \approx\left(C_{1}+C_{2}\right) k+C_{m m} m k^{2}+C_{q r} m k^{2}+C_{s v d} n k^{2}
$$

Examples of Environment 3 include:

1. A is sparse
2. A has internal structure. For instance A is a convolution matrix:

$$
\left[\begin{array}{ccccc}
b_{1} & b_{2} & b_{3} & \ldots & b_{n} \\
b_{n} & b_{1} & b_{2} & \ldots & b_{n-1} \\
b_{n-1} & b_{n} & b_{1} & \ldots & b_{n-2} \\
\vdots & & \vdots & \ddots & \vdots \\
b_{2} & b_{3} & b_{4} & \ldots & b_{1}
\end{array}\right]
$$

Then A can be applied to a vector in $O(n \log n)$ operations using the Fast Fourier Transform. $y=F^{-1}\left(F A F^{-1}\right) F x$ where F is the $n \times n$ discrete Fourier Transform.

The "FFT" algorithm applies F or F^{-1} in $O(n \log n)$ operations.
3. Applying A could consist of solving a PDE using a spare solver such as Multigrid methods.

