(1) Suppose A is an $m \times n$ matrix of approximate $\operatorname{rank} k$, and that we have identified two index sets I_{s} and J_{s} such that the matrices

$$
\begin{aligned}
& C=A\left(:, J_{s}\right) \\
& R=A\left(I_{s},:\right)
\end{aligned}
$$

hold k columns/rows that approximately span the column/row space of A. You may assume that C and R both have rank k (in other words, the index vectors J_{s} and I_{s} are not very bad). Then

$$
A \approx C C^{\dagger} A R^{\dagger} R
$$

and the optimal choice for the "U" factor in the CUR decomposition is,

$$
U=C^{\dagger} A R^{\dagger}
$$

Set $X=C C^{\dagger}$.
(a) Suppose that C has SVD

$$
C=U D V^{*}
$$

Prove that $X=U U^{*}$.
Solution: Let $C=U D V^{*}$. Then

$$
\begin{aligned}
X & =C C^{\dagger} \\
& =U D V^{*}\left(U D V^{*}\right)^{\dagger} \\
& =U D V^{*} V D^{\dagger} U^{*} \\
& =U D D^{\dagger} U^{*} \\
& =U D D^{-1} U^{*} \\
& =U U^{*} .
\end{aligned}
$$

Note that $D^{\dagger}=D^{-1}$ since C is $m \times k$ and of rank k.
(b) Suppose that C has the QR factorization

$$
C P=Q S
$$

Prove that $X=Q Q^{*}$. (Observe that S is necessarily invertible, since C has rank k. You can then prove that $C^{\dagger}=P S^{-1} Q^{*}$.)

Solution: $C P=Q S \Longrightarrow C=Q S P^{*}$ since $P P^{*}=P^{*} P=I$. Then

$$
\begin{aligned}
X & =C C^{\dagger} \\
& =Q S P^{*}\left(Q S P^{*}\right)^{\dagger} \\
& =Q S P^{*} P S^{\dagger} Q^{*} \\
& =Q S S^{\dagger} Q^{*} \\
& =Q S S^{-1} Q^{*} \\
& =Q Q^{*}
\end{aligned}
$$

Note that $S^{\dagger}=S^{-1}$ since C is $m \times k$ and of rank k.
(c) Prove that X is the orthogonal projection onto $\operatorname{Col}(\mathrm{C})$.

Solution: First, in order for X to be an orthogonal projection, it must satisfy $X=X^{*}$ and $X^{2}=X$.

Let $C=U D V^{*}$ be the SVD of C as in part(a). Then $X=C C^{\dagger}=U U^{*}$ and $X^{*}=\left(U U^{*}\right)^{*}=U U^{*}=X$.

Moreover, $X X^{*}=X^{2}=\left(U U^{*}\right)\left(U U^{*}\right)=U U^{*}=X$, and so X is an orthogonal projection. It is also straightforward to check $\|X\|=1$ since U is orthogonal.

Now, it is left to show that X projects onto $\operatorname{Col}(\mathrm{C})$. Recall the definition of the Moore-Penrose puseudo-inverse: $C^{\dagger}=\left(C^{*} C\right)^{-1} C^{*}$, where C is $m \times$ k with k linearly independent columns and decompose the space $C=$ $\operatorname{ran}(C) \oplus \operatorname{ker}\left(C^{*}\right)$. Let $v \in \operatorname{ran}(C)=\operatorname{col}(C)$, then there exists a u such that $v=C u$. Furthermore,

$$
X v=C C^{\dagger} v=C\left(C^{*} C\right)^{-1} C^{*} v=C\left(C^{*} C\right)^{-1} C^{*} C u=C u=v
$$

Suppose $w \in \operatorname{ker}\left(C^{*}\right)$, then $C^{*} w=0$.

$$
X x=C C^{\dagger} w=C\left(C^{*} C\right)^{-1} C^{*} w=0
$$

Since X projects element from the range of C to itself and elements from the kernel to the 0 element, X is a projection operator onto $\operatorname{col}(C)$.
(d) Suppose that A has precisely rank k and that C and R are both of rank k. Prove that then

$$
C^{\dagger} A R^{\dagger}=\left(A\left(I_{s} . J_{s}\right)\right)^{-1}
$$

Solution: Let $\operatorname{rank}(A)=\operatorname{rank}(C)=\operatorname{rank}(R)=k$ and recall that $C=$ $A\left(:, J_{s}\right)$ and $R=A\left(I_{s},:\right)$. Thus, $C\left(I_{s},:\right)=A\left(I_{s}, J_{s}\right)$ is a $k \times k$ matrix of rank k, implying $A\left(I_{s}, J_{s}\right)$ is invertible. Moreover, since $\operatorname{rank}(A)=k$, we have from class that

$$
A=C A\left(I_{s}, J_{s}\right)^{-1} R
$$

the double sided ID.
We will digress for a moment and reprove it here. Since A is precisely of rank k, it admits a factorization

$$
A=C Z
$$

where $C=A\left(:, J_{s}\right)$ and Z contains some the $k \times k$ identity matrix as a sub-matrix as well as the expansion coefficients used to build A from the skeleton columns contained in C. A also admits the factorization

$$
A=X R
$$

where $R=A\left(I_{s},:\right)$ consisting of k rows of A, where X also contains the $k \times k$ identity with a different set of expansion coefficients used to build A. Taking the I_{s} rows of the Column-ID, we have

$$
A\left(I_{s},:\right)=C\left(I_{s},:\right) Z=A\left(I_{s}, J_{s}\right) Z
$$

it must be the case that

$$
Z=\left(A\left(I_{s}, J_{s}\right)\right)^{-1} A\left(I_{s},:\right)
$$

Thus,

$$
A=C Z=C\left(A\left(I_{s}, J_{s}\right)\right)^{-1} A\left(I_{s},:\right)=C\left(A\left(I_{s}, J_{s}\right)\right)^{-1} R .
$$

Now, left multiplying both sides by C^{\dagger} and right multiplying by R^{\dagger} yields

$$
C^{\dagger} A R^{\dagger}=C^{\dagger} C A\left(I_{s}, J_{s}\right)^{-1} R R^{\dagger}=A\left(I_{s}, J_{s}\right)^{-1}
$$

since C^{\dagger} is the left inverse of C and R^{\dagger} is the right inverse of R.

