(1) Suppose A is an $m \times n$ matrix of *approximate* rank k, and that we have identified two index sets I_s and J_s such that the matrices

$$C = A(:, J_s)$$
$$R = A(I_s, :)$$

hold k columns/rows that approximately span the column/row space of A. You may assume that C and R both have rank k (in other words, the index vectors J_s and I_s are not very bad). Then

$$A \approx C C^{\dagger} A R^{\dagger} R,$$

and the optimal choice for the "U" factor in the CUR decomposition is,

$$U = C^{\dagger} A R^{\dagger}.$$

Set $X = CC^{\dagger}$.

(a) Suppose that C has SVD

$$C = UDV^*.$$

Prove that $X = UU^*$.

Solution: Let $C = UDV^*$. Then

$$X = CC^{\dagger}$$

= $UDV^*(UDV^*)^{\dagger}$
= $UDV^*VD^{\dagger}U^*$
= $UDD^{\dagger}U^*$
= $UDD^{-1}U^*$
= UU^* .

Note that $D^{\dagger} = D^{-1}$ since C is $m \times k$ and of rank k.

(b) Suppose that C has the QR factorization

$$CP = QS$$

Prove that $X = QQ^*$. (Observe that S is necessarily invertible, since C has rank k. You can then prove that $C^{\dagger} = PS^{-1}Q^*$.)

Solution: $CP = QS \implies C = QSP^*$ since $PP^* = P^*P = I$. Then

$$X = CC^{\dagger}$$

= $QSP^*(QSP^*)^{\dagger}$
= $QSP^*PS^{\dagger}Q^*$
= $QSS^{\dagger}Q^*$
= $QSS^{-1}Q^*$
= QQ^*

Note that $S^{\dagger} = S^{-1}$ since C is $m \times k$ and of rank k.

(c) Prove that X is the orthogonal projection onto Col(C).

Solution: First, in order for X to be an orthogonal projection, it must satisfy $X = X^*$ and $X^2 = X$.

Let $C = UDV^*$ be the SVD of C as in part(a). Then $X = CC^{\dagger} = UU^*$ and $X^* = (UU^*)^* = UU^* = X$.

Moreover, $XX^* = X^2 = (UU^*)(UU^*) = UU^* = X$, and so X is an orthogonal projection. It is also straightforward to check ||X|| = 1 since U is orthogonal.

Now, it is left to show that X projects onto Col(C). Recall the definition of the Moore-Penrose puseudo-inverse: $C^{\dagger} = (C^*C)^{-1}C^*$, where C is $m \times k$ with k linearly independent columns and decompose the space $C = \operatorname{ran}(C) \oplus \ker(C^*)$. Let $v \in \operatorname{ran}(C) = \operatorname{col}(C)$, then there exists a u such that v = Cu. Furthermore,

$$Xv = CC^{\dagger}v = C(C^{*}C)^{-1}C^{*}v = C(C^{*}C)^{-1}C^{*}Cu = Cu = v.$$

Suppose $w \in \ker(C^*)$, then $C^*w = 0$.

$$Xx = CC^{\dagger}w = C(C^{*}C)^{-1}C^{*}w = 0$$

Since X projects element from the range of C to itself and elements from the kernel to the 0 element, X is a projection operator onto col(C).

(d) Suppose that A has precisely rank k and that C and R are both of rank k. Prove that then

$$C^{\dagger}AR^{\dagger} = (A(I_s.J_s))^{-1}.$$

Solution: Let $\operatorname{rank}(A) = \operatorname{rank}(C) = \operatorname{rank}(R) = k$ and recall that $C = A(:, J_s)$ and $R = A(I_s, :)$. Thus, $C(I_s, :) = A(I_s, J_s)$ is a $k \times k$ matrix of rank k, implying $A(I_s, J_s)$ is invertible. Moreover, since $\operatorname{rank}(A) = k$, we have from class that

$$A = CA(I_s, J_s)^{-1}R,$$

the double sided ID.

We will digress for a moment and reprove it here. Since A is precisely of rank k, it admits a factorization

$$A = CZ,$$

where $C = A(:, J_s)$ and Z contains some the $k \times k$ identity matrix as a sub-matrix as well as the expansion coefficients used to build A from the skeleton columns contained in C. A also admits the factorization

$$A = XR$$

where $R = A(I_s, :)$ consisting of k rows of A, where X also contains the $k \times k$ identity with a different set of expansion coefficients used to build A. Taking the I_s rows of the Column-ID, we have

$$A(I_s,:) = C(I_s,:)Z = A(I_s,J_s)Z,$$

it must be the case that

$$Z = (A(I_s, J_s))^{-1}A(I_s, :).$$

Thus,

$$A = CZ = C(A(I_s, J_s))^{-1}A(I_s, :) = C(A(I_s, J_s))^{-1}R$$

Now, left multiplying both sides by C^{\dagger} and right multiplying by R^{\dagger} yields

$$C^{\dagger}AR^{\dagger} = C^{\dagger}CA(I_s, J_s)^{-1}RR^{\dagger} = A(I_s, J_s)^{-1}$$

since C^{\dagger} is the left inverse of C and R^{\dagger} is the right inverse of R.