Homework set 4 - APPM4720/5720, Spring 2016

Problem 1: Suppose that \mathbf{A} is an $m \times n$ matrix of approximate rank k, and that we have identified two index sets I_{s} and J_{s} such that the matrices

$$
\begin{align*}
\mathbf{C} & :=\mathbf{A}\left(:, J_{\mathrm{s}}\right) \tag{1}\\
\mathbf{R} & :=\mathbf{A}\left(I_{\mathrm{s}},:\right) \tag{2}
\end{align*}
$$

hold k columns/rows that approximately span the column/row space of \mathbf{A}. You may assume that \mathbf{C} and \mathbf{R} both have rank k (in other words, the index vectors J_{s} and I_{s} are not very bad). Then

$$
\mathbf{A} \approx \mathbf{C C}^{\dagger} \mathbf{A} \mathbf{R}^{\dagger} \mathbf{R}
$$

and the optimal choice for the "U" factor in the CUR decomposition is

$$
\mathbf{U}:=\mathbf{C}^{\dagger} \mathbf{A} \mathbf{R}^{\dagger} .
$$

Set $\mathbf{X}=\mathbf{C C}^{\dagger}$.
(a) Suppose that \mathbf{C} has the SVD

$$
\underset{m \times k}{\mathbf{C}}=\underset{m \times k}{\mathbf{U}} \underset{k \times k}{\mathbf{D}} \underset{k \times k}{\mathbf{V}^{*}}
$$

Prove that $\mathbf{X}=\mathbf{U U}$.
(b) Suppose that \mathbf{C} has the QR factorization

$$
\underset{m \times k}{\mathbf{C}} \underset{k \times k}{\mathbf{P}}=\underset{m \times k}{\mathbf{Q}} \underset{k \times k}{\mathbf{S}}
$$

Prove that $\mathbf{X}=\mathbf{Q} \mathbf{Q}^{*}$. (Observe that \mathbf{S} is necessarily invertible, since \mathbf{C} has rank k. You can then prove that $\mathbf{C}^{\dagger}=\mathbf{P S}^{-1} \mathbf{Q}^{*}$.)
(c) Prove that \mathbf{X} is the orthogonal projection onto $\operatorname{Col}(\mathbf{C})$.
(d) Suppose that \mathbf{A} has precisely rank k and that \mathbf{C} and \mathbf{R} are both of rank k. Prove that then

$$
\mathbf{C}^{\dagger} \mathbf{A} \mathbf{R}^{\dagger}=\left(\mathbf{A}\left(I_{\mathrm{s}}, J_{\mathrm{s}}\right)\right)^{-1}
$$

Problem 2: Let \mathbf{A} be an $n \times n$ matrix and suppose (i) that $\mathbf{A}(i, j)>0$ for every i, j and (ii) that $\sum_{i=1}^{n} \mathbf{A}(i, j)=1$ for every j (each column sums to one).
(a) Let \mathbf{p} be a vector of non-negative numbers such that $\sum_{j=1}^{n} \mathbf{p}(j)=1$. Set $\mathbf{p}^{\prime}=\mathbf{A p}$. Prove that $\sum_{j=1}^{n} \mathbf{p}^{\prime}(j)=$ 1. (In other words, the matrix \mathbf{A} maps every probability distribution on the set $\{1,2, \ldots, n\}$ to another probability distribution.)
(b) Prove that \mathbf{A} has an eigenvector with corresponding eigenvalue 1.

Problem 3: On the course webpage, you can download a file testmatrices.mat that holds three test matrices A, B, and C. Each matrix is of size $m \times 1000$ and contains a thousand samples from a multivariate normal distribution on \mathbb{R}^{m}. Use PCA to estimate the mean and the co-variance matrices of these distributions. It is sufficient to hand in your numerical answers. (The person doing the reference homework should also hand in code, and a brief description of the solution process.)

