1. Let **A** be an $m \times n$ matrix, set $p = \min(m, n)$, and suppose that the singular value decomposition of **A** takes the form

$$\mathbf{A} = \mathbf{U} \quad \mathbf{D} \quad \mathbf{V}^*$$
$$m \times n \qquad m \times p \quad p \times p \quad p \times n.$$
(1)

Let k be an integer such that $1 \leq k < p$ and let \mathbf{A}_k denote the truncation of the SVD to the first k terms:

$$\mathbf{A}_k = \mathbf{U}(:, 1:k)\mathbf{D}(1:k, 1:k)\mathbf{V}(:, 1:k)^*$$

Prove directly from the definition of the spectral and Frobenius norms that

$$\|\mathbf{A} - \mathbf{A}_k\| = \sigma_{k+1} \tag{2}$$

and that

$$\|\mathbf{A} - \mathbf{A}_k\|_F = \left(\sum_{j=k+1}^p \sigma_j^2\right)^{1/2}.$$
 (3)

Solution: First, partition the factorization UDV^* as

$$m \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \\ k & p-k \end{bmatrix} p-k \begin{bmatrix} \mathbf{D}_1 & 0 \\ 0 & \mathbf{D}_2 \\ k & p-k \end{bmatrix} p-k \begin{bmatrix} \mathbf{V}_1^* \\ \mathbf{V}_2^* \\ n \end{bmatrix}.$$

Then observe that $\mathbf{U}_1 = \mathbf{U}(:, 1:k)$, $\mathbf{D}_1 = D(1:k, 1:k)$, and $\mathbf{V}_1^* = V(:, 1:k)^*$, so that $\mathbf{A}_k = \mathbf{U}_1 \mathbf{D}_1 \mathbf{V}_1^*$. By carrying out block multiplication on the partitioned factorization, we see that

$$\mathbf{A} = \mathbf{U}_1 \mathbf{D}_1 \mathbf{V}_1^* + \mathbf{U}_2 \mathbf{D}_2 \mathbf{V}_2^* = \mathbf{A}_k + \mathbf{U}_2 \mathbf{D}_2 \mathbf{V}_2^*,$$

 \mathbf{SO}

$$\mathbf{A} - \mathbf{A}_k = \mathbf{U}_2 \mathbf{D}_2 \mathbf{V}_2^*. \tag{4}$$

(a) First we'll show that $\|\mathbf{A} - \mathbf{A}_k\| = \sigma_{k+1}$. Let $\mathbf{x} \in \mathbb{R}^n$ be any vector such that $\|\mathbf{x}\| = 1$. We will show that $\|(\mathbf{A} - \mathbf{A}_k)\mathbf{x}\| \leq \sigma_{k+1}$. We establish the notation that \mathbf{v}_i and \mathbf{u}_i are the columns of \mathbf{V} and \mathbf{U} , respectively. Since the columns of \mathbf{V} are orthonormal we can construct an orthonormal basis of \mathbb{R}^n : $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p, \mathbf{v}_{p+1}, \dots, \mathbf{v}_n\}$ (note that vectors \mathbf{v}_{p+1} through \mathbf{v}_n

are not actually columns of ${\bf V}$ but are simply used to construct the basis), and thus

$$\mathbf{x} = \sum_{i=1}^{n} c_i \mathbf{v}_n$$

for some $c_i, i = 1, \ldots, n$. Now, we have that

$$(\mathbf{A} - \mathbf{A}_k)\mathbf{x} = \mathbf{U}_2\mathbf{D}_2\mathbf{V}_2^*\mathbf{x}$$

Since the *i*-th entry of $\mathbf{V}_2^* \mathbf{x}$ is $\langle \mathbf{v}_i, \mathbf{x} \rangle$, and since \mathbf{x} is a linear combination of the orthonormal basis $\{\mathbf{v}_i\}_{i=1}^n$,

$$\mathbf{V}_2^* \mathbf{x} = \begin{bmatrix} c_{k+1} \\ c_{k+2} \\ \vdots \\ c_p \end{bmatrix},$$

and so

$$\mathbf{U}_2 \mathbf{D}_2 \mathbf{V}_2^* \mathbf{x} = \sum_{i=k+1}^p c_i \sigma_i \mathbf{u}_i$$

which implies

$$\|\mathbf{U}_2\mathbf{D}_2\mathbf{V}_2^*\mathbf{x}\| \le \sigma_{k+1}\|\sum_{i=k+1}^p c_i\mathbf{u}_i\|.$$

Finally, by the orthonormality of $\{\mathbf{u}_i\}_{i=1}^p$,

$$\|\sum_{i=k+1}^{p} c_i \mathbf{u}_i\|^2 = \sum_{i=k+1}^{p} c_i^2,$$

and by the orthonormality of $\{\mathbf{v}_i\}_{i=1}^n$,

$$1 = \|\mathbf{x}\|^2 = \|\sum_{i=1}^n c_i \mathbf{v}_n\|^2 = \sum_{i=1}^n c_i^2 \implies \sum_{i=k+1}^p c_i^2 \le 1,$$

and therefore

$$\|(\mathbf{A} - \mathbf{A}_k)\mathbf{x}\| \le \sigma_{k+1} \|\sum_{i=k+1}^p c_i \mathbf{u}_i\| \le \sigma_{k+1}$$

Thus, we have shown that $\|\mathbf{A} - \mathbf{A}_k\| \leq \sigma_{k+1}$. Next, we observe that for $\mathbf{x} = \mathbf{v}_{k+1}$,

$$\|(\mathbf{A} - \mathbf{A}_k)\mathbf{x}\| = \|\sigma_{k+1}\mathbf{u}_{k+1}\| = \sigma_{k+1}\|\mathbf{u}_{k+1}\| = \sigma_{k+1},$$

so since $\|\mathbf{v}_{k+1}\| = 1$, $\|\mathbf{A} - \mathbf{A}_k\| \ge \sigma_{k+1}$. Therefore,

$$\|\mathbf{A} - \mathbf{A}_k\| = \sigma_{k+1}.$$

(b) Next, we'll prove (3). We have that $\|\mathbf{A} - \mathbf{A}_k\|_F = \|\mathbf{U}_2\mathbf{D}_2\mathbf{V}_2^*\|_F$, and we claim that $\|\mathbf{U}_2\mathbf{D}_2\mathbf{V}_2^*\|_F = \|\mathbf{D}_2\|_F$. Let $\mathbf{y}_i, i = 1, 2, \ldots, n$ be the columns of $\mathbf{D}_2\mathbf{V}_2^*$. Then we have

$$\|\mathbf{U}_{2}\mathbf{D}_{2}\mathbf{V}_{2}^{*}\|_{F}^{2} = \sum_{i=1}^{n} \|\mathbf{U}_{2}\mathbf{y}_{i}\|_{2}^{2} = \sum_{i=1}^{n} \langle \mathbf{U}_{2}\mathbf{y}_{i}, \mathbf{U}_{2}\mathbf{y}_{i} \rangle = \sum_{i=1}^{n} \|\mathbf{y}_{i}\|_{2}^{2} = \|\mathbf{D}_{2}\mathbf{V}_{2}^{*}\|_{F}^{2}$$

by the orthonormality of \mathbf{U}_2 , which implies

$$\|\mathbf{U}_2\mathbf{D}_2\mathbf{V}_2^*\|_F = \|\mathbf{D}_2\mathbf{V}_2^*\|_F.$$

Similarly, since the columns of \mathbf{V}_2 are orthonormal, we have

$$\|\mathbf{D}_{2}\mathbf{V}_{2}^{*}\|_{F} = \|(\mathbf{D}_{2}\mathbf{V}_{2}^{*})^{*}\|_{F} = \|\mathbf{V}_{2}\mathbf{D}_{2}\|_{F} = \|\mathbf{D}_{2}\|_{F}.$$

Then we can compute $\|\mathbf{D}_2\|_F$ directly to obtain

$$\|\mathbf{A} - \mathbf{A}_k\|_F = \|\mathbf{D}_2\|_F = \left(\sum_{j=k+1}^p \sigma_j^2\right)^{1/2}.$$