1. Let \mathbf{A} be an $m \times n$ matrix, set $p=\min (m, n)$, and suppose that the singular value decomposition of \mathbf{A} takes the form

$$
\underset{m \times n}{\mathbf{A}} \quad=\begin{array}{ccc}
\mathbf{U} & \mathbf{D} & \mathbf{V}^{*} \tag{1}\\
m \times p & p \times p & p \times n
\end{array}
$$

Let k be an integer such that $1 \leq k<p$ and let \mathbf{A}_{k} denote the truncation of the SVD to the first k terms:

$$
\mathbf{A}_{k}=\mathbf{U}(:, 1: k) \mathbf{D}(1: k, 1: k) \mathbf{V}(:, 1: k)^{*}
$$

Prove directly from the definition of the spectral and Frobenius norms that

$$
\begin{equation*}
\left\|\mathbf{A}-\mathbf{A}_{k}\right\|=\sigma_{k+1} \tag{2}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}=\left(\sum_{j=k+1}^{p} \sigma_{j}^{2}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

Solution: First, partition the factorization UDV* as

$$
m\left[\begin{array}{ccc}
& & \\
\mathbf{U}_{1} & \mathbf{U}_{2} \\
k & p-k
\end{array}\right] \begin{gathered}
p-k
\end{gathered}\left[\begin{array}{cc}
\mathbf{D}_{1} & 0 \\
0 & \mathbf{D}_{2} \\
k & p-k
\end{array}\right] \begin{gathered}
k \\
p-k
\end{gathered}\left[\begin{array}{c}
\mathbf{V}_{1}^{*} \\
\mathbf{V}_{2}^{*} \\
n
\end{array}\right]
$$

Then observe that $\mathbf{U}_{1}=\mathbf{U}(:, 1: k), \mathbf{D}_{1}=D(1: k, 1: k)$, and $\mathbf{V}_{1}^{*}=V(:, 1: k)^{*}$, so that $\mathbf{A}_{k}=\mathbf{U}_{1} \mathbf{D}_{1} \mathbf{V}_{1}^{*}$. By carrying out block multiplication on the partitioned factorization, we see that

$$
\mathbf{A}=\mathbf{U}_{1} \mathbf{D}_{1} \mathbf{V}_{1}^{*}+\mathbf{U}_{2} \mathbf{D}_{2} \mathbf{V}_{2}^{*}=\mathbf{A}_{k}+\mathbf{U}_{2} \mathbf{D}_{2} \mathbf{V}_{2}^{*}
$$

so

$$
\begin{equation*}
\mathbf{A}-\mathbf{A}_{k}=\mathbf{U}_{2} \mathbf{D}_{2} \mathbf{V}_{2}^{*} \tag{4}
\end{equation*}
$$

(a) First we'll show that $\left\|\mathbf{A}-\mathbf{A}_{k}\right\|=\sigma_{k+1}$. Let $\mathbf{x} \in \mathbb{R}^{n}$ be any vector such that $\|\mathbf{x}\|=1$. We will show that $\left\|\left(\mathbf{A}-\mathbf{A}_{k}\right) \mathbf{x}\right\| \leq \sigma_{k+1}$. We establish the notation that \mathbf{v}_{i} and \mathbf{u}_{i} are the columns of \mathbf{V} and \mathbf{U}, respectively. Since the columns of \mathbf{V} are orthonormal we can construct an orthonormal basis of $\mathbb{R}^{n}:\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}, \mathbf{v}_{p+1}, \ldots, \mathbf{v}_{n}\right\}$ (note that vectors \mathbf{v}_{p+1} through \mathbf{v}_{n}
are not actually columns of \mathbf{V} but are simply used to construct the basis), and thus

$$
\mathbf{x}=\sum_{i=1}^{n} c_{i} \mathbf{v}_{n}
$$

for some $c_{i}, i=1, \ldots, n$. Now, we have that

$$
\left(\mathbf{A}-\mathbf{A}_{k}\right) \mathbf{x}=\mathbf{U}_{2} \mathbf{D}_{2} \mathbf{V}_{2}^{*} \mathbf{x}
$$

Since the i-th entry of $\mathbf{V}_{2}^{*} \mathbf{x}$ is $\left\langle\mathbf{v}_{i}, \mathbf{x}\right\rangle$, and since \mathbf{x} is a linear combination of the orthonormal basis $\left\{\mathbf{v}_{i}\right\}_{i=1}^{n}$,

$$
\mathbf{V}_{2}^{*} \mathbf{x}=\left[\begin{array}{c}
c_{k+1} \\
c_{k+2} \\
\vdots \\
c_{p}
\end{array}\right]
$$

and so

$$
\mathbf{U}_{2} \mathbf{D}_{2} \mathbf{V}_{2}^{*} \mathbf{x}=\sum_{i=k+1}^{p} c_{i} \sigma_{i} \mathbf{u}_{i}
$$

which implies

$$
\left\|\mathbf{U}_{2} \mathbf{D}_{2} \mathbf{V}_{2}^{*} \mathbf{x}\right\| \leq \sigma_{k+1}\left\|\sum_{i=k+1}^{p} c_{i} \mathbf{u}_{i}\right\|
$$

Finally, by the orthonormality of $\left\{\mathbf{u}_{i}\right\}_{i=1}^{p}$,

$$
\left\|\sum_{i=k+1}^{p} c_{i} \mathbf{u}_{i}\right\|^{2}=\sum_{i=k+1}^{p} c_{i}^{2}
$$

and by the orthonormality of $\left\{\mathbf{v}_{i}\right\}_{i=1}^{n}$,

$$
1=\|\mathbf{x}\|^{2}=\left\|\sum_{i=1}^{n} c_{i} \mathbf{v}_{n}\right\|^{2}=\sum_{i=1}^{n} c_{i}^{2} \Longrightarrow \sum_{i=k+1}^{p} c_{i}^{2} \leq 1
$$

and therefore

$$
\left\|\left(\mathbf{A}-\mathbf{A}_{k}\right) \mathbf{x}\right\| \leq \sigma_{k+1}\left\|\sum_{i=k+1}^{p} c_{i} \mathbf{u}_{i}\right\| \leq \sigma_{k+1}
$$

Thus, we have shown that $\left\|\mathbf{A}-\mathbf{A}_{k}\right\| \leq \sigma_{k+1}$. Next, we observe that for $\mathbf{x}=\mathbf{v}_{k+1}$,

$$
\left\|\left(\mathbf{A}-\mathbf{A}_{k}\right) \mathbf{x}\right\|=\left\|\sigma_{k+1} \mathbf{u}_{k+1}\right\|=\sigma_{k+1}\left\|\mathbf{u}_{k+1}\right\|=\sigma_{k+1}
$$

so since $\left\|\mathbf{v}_{k+1}\right\|=1,\left\|\mathbf{A}-\mathbf{A}_{k}\right\| \geq \sigma_{k+1}$. Therefore,

$$
\left\|\mathbf{A}-\mathbf{A}_{k}\right\|=\sigma_{k+1} .
$$

(b) Next, we'll prove (3). We have that $\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}=\left\|\mathbf{U}_{2} \mathbf{D}_{2} \mathbf{V}_{2}^{*}\right\|_{F}$, and we claim that $\left\|\mathbf{U}_{2} \mathbf{D}_{2} \mathbf{V}_{2}^{*}\right\|_{F}=\left\|\mathbf{D}_{2}\right\|_{F}$. Let $\mathbf{y}_{i}, i=1,2, \ldots, n$ be the columns of $\mathbf{D}_{2} \mathbf{V}_{2}^{*}$. Then we have

$$
\left\|\mathbf{U}_{2} \mathbf{D}_{2} \mathbf{V}_{2}^{*}\right\|_{F}^{2}=\sum_{i=1}^{n}\left\|\mathbf{U}_{2} \mathbf{y}_{i}\right\|_{2}^{2}=\sum_{i=1}^{n}\left\langle\mathbf{U}_{2} \mathbf{y}_{i}, \mathbf{U}_{2} \mathbf{y}_{i}\right\rangle=\sum_{i=1}^{n}\left\|\mathbf{y}_{i}\right\|_{2}^{2}=\left\|\mathbf{D}_{2} \mathbf{V}_{2}^{*}\right\|_{F}^{2}
$$

by the orthonormality of \mathbf{U}_{2}, which implies

$$
\left\|\mathbf{U}_{2} \mathbf{D}_{2} \mathbf{V}_{2}^{*}\right\|_{F}=\left\|\mathbf{D}_{2} \mathbf{V}_{2}^{*}\right\|_{F} .
$$

Similarly, since the columns of \mathbf{V}_{2} are orthonormal, we have

$$
\left\|\mathbf{D}_{2} \mathbf{V}_{2}^{*}\right\|_{F}=\left\|\left(\mathbf{D}_{2} \mathbf{V}_{2}^{*}\right)^{*}\right\|_{F}=\left\|\mathbf{V}_{2} \mathbf{D}_{2}\right\|_{F}=\left\|\mathbf{D}_{2}\right\|_{F}
$$

Then we can compute $\left\|\mathbf{D}_{2}\right\|_{F}$ directly to obtain

$$
\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}=\left\|\mathbf{D}_{2}\right\|_{F}=\left(\sum_{j=k+1}^{p} \sigma_{j}^{2}\right)^{1 / 2} .
$$

