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Problem definition: Consider the task of evaluation the sum

(1) ui =
N∑
j=1

G(xi, xj) qj , i = 1, 2, . . . , N,

where

{xi}Ni=1 is a given set of points in a square Ω in the plane, where

{qi}Ni=1 is a given set of real numbers which we call charges, and where

{ui}Ni=1 is a sought set of real numbers which we call potentials.

The kernel G is given by

(2) G(x,y) =

 log(x− y), when x ̸= y

0 when x = y.

Recall: A point x ∈ R2 is represented by the complex number

x = x1 + i x2 ∈ C.

Then the kernel in (2) is a complex representation of the fundamental solution to

the Laplace equation in R2 since

log |x− y| = Real
(
log(x− y)

)
.

(The factor of −1/2π is suppressed.)



Charges qj at locations {yj}Nj=1.

Potentials ui at locations {xi}Mi=1.

ui =
N∑
j=1

qj log(xi−yj), i = 1, 2, . . . , M

ui = u(xi), i = 1, 2, . . . , M

u(x) =
N∑
j=1

qj log(x− yj)

Special case: Sources and targets are separate

Direct evaluation

Cost is O(M N).
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qj log(xi−yj), i = 1, 2, . . . , M

ui = u(xi), i = 1, 2, . . . , M

u(x) =
N∑
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qj log(x− yj)

Special case: Sources and targets are separate

Multipole expansion:

Since u is harmonic outside the magenta circle, we know that

u(x) = α0 log(x− c) +
∞∑
p=1

αp
1

(x− c)p
, where αp = −1

p

N∑
j=1

qj
(
yj − c)p.



Charges qj at locations {yj}Nj=1.

Potentials ui at locations {xi}Mi=1.

ui =
N∑
j=1

qj log(xi−yj), i = 1, 2, . . . , M

ui = u(xi), i = 1, 2, . . . , M

u(x) =
N∑
j=1

qj log(x− yj)

Special case: Sources and targets are separate

Multipole expansion — truncated to P + 1 terms:

Since u is harmonic outside the magenta circle, we know that

u(x) = α0 log(x− c) +
P∑

p=1

αp
1

(x− c)p
+ EP , where αp = −1

p

N∑
j=1

qj
(
yj − c)p.

The approximation error EP scales as EP ∼
( r

R

)P
=

(√
2a

3a

)P

=

(√
2

3

)P

.



Charges qj at locations {yj}Nj=1.

Potentials ui at locations {xi}Mi=1.

ui =
N∑
j=1

qj log(xi−yj), i = 1, 2, . . . , M

ui = u(xi), i = 1, 2, . . . , M

u(x) =
N∑
j=1

qj log(x− yj)

Special case: Sources and targets are separate

Multipole expansion — truncated to P + 1 terms — costs:

Evaluate αp = −1

p

N∑
j=1

qj
(
yj − c)p for p = 0, 1, . . . , P — cost is O(N P ).

Evaluate ui = α0 log(x− c) +

P∑
p=1

αp
1

(x− c)p
— cost is O(M P ).



We write the map in matrix form as ||A− B̃ C|| ≤ ε, or

q
A //

C
��

u

q̂
B̃

<<yyyyyyyy

where

q = [qj ]
N
j=1 ∈ RN is the vector of sources

u = [ui]
M
i=1 ∈ CM is the vector of potentials

q̂ = [q̂p]
N
p=0 ∈ CP+1 is the outgoing expansion (the “multipole coefficients”)

A ∈ CM×N

C ∈ C(P+1)×N is the outgoing-from-sources map

B̃ ∈ CM×(P+1) is the targets-from-outgoing map.

Aij = log(xi − yj)

Cpj =

 1 p = 0

−(1/p) (yj − c)p p ̸= 0

B̃ip =

 log(xi − c) p = 0

1/(xi − c)p p ̸= 0



Definition: Let Ω be a square with center c = (c1, c2) and side length 2a. Then

we say that a point x ∈ R2 is well-separated from Ω if

max(|x1 − c1|, |x2 − c2|) ≥ 3a.

6a 2a c

y1

y2

y3

x1

x2

x3

x4

Ω

Any point on or outside of the dashed square is well-separated from Ω.

Consequently, the points x2, x3, and x4 are well-separated from Ω, but x1 is not.



Single-level Barnes-Hut

Suppose that we seek to evaluate all pairwise interactions between the N particles

shown above.

We suppose the particles are more or less evenly distributed for now.



Single-level Barnes-Hut

Place a square grid of boxes on top of the computational box.

Assume each box holds about Nbox particles (so there are about N/Nbox boxes).



Single-level Barnes-Hut

How do you evaluate the potentials at the blue locations?



Single-level Barnes-Hut

How do you evaluate the potentials at the blue locations?

Directly evaluate interactions with the particles close by.

For all long-distance interactions, use the out-going expansion!



Cost of the single-level Barnes-Hut algorithm:

Let Nbox denote the number of particles in a box.

For each particle, we need to do the following:

Step 1: Evaluate the P outgoing moments: P

Step 2: Evaluate potentials from out-going expansions: ((N/Nbox)− 9)P

Step 3: Evaluate potentials from close particles: 9Nbox

Using that P is a smallish constant we find

cost ∼ N2

Nbox
+N Nbox.

Set Nbox ∼ N1/2 to obtain:

cost ∼ N1.5.

We’re doing better than O(N2) but still not great.



Notation — single level Barnes-Hut:

Partition the box Ω into smaller boxes and label them:
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21
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56

57

58
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63

64

For a box τ , let L(nei)
τ denote its neighbors, and L(far)

τ denote the remaining boxes.
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For a box τ , let L(nei)
τ denote its neighbors, and L(far)

τ denote the remaining boxes.

The box τ = 21 is marked with red.

L(nei)
21 = {12, 13, 14, 20, 22, 28, 29, 30} are the blue boxes.

L(far)
21 = · · · are the green boxes.



Let Jτ denote an index vector marking which particles belong to τ :

j ∈ Jτ ⇔ xj is in box τ.

Set

qτ = q(Jτ ) — the sources in τ

q̂τ ∈ CP+1 — the outgoing expansion for τ (the “multipole coefficients”)

uτ = u(Jτ ) — the potentials in τ

Then

qτ
Aσ,τ //

Cτ
��

uσ

q̂τ
B̃σ,τ

::vvvvvvvv

Recall: P is an integer parameter balancing cost versus accuracy:

P large ⇒ high accuracy and high cost



Single-level Barnes-Hut

Compute the outgoing expansions on all boxes:

loop over all boxes τ

q̂τ = Cτ q(Jτ )

end loop

Evaluate the far field potentials.

Each box τ aggregates the contributions from all well-separated boxes:

u = 0

loop over all boxes τ

loop over all σ ∈ L(far)
τ (i.e. all σ that are well-separated from τ)

u(Jτ ) = u(Jτ ) + B̃τ,σ q̂σ

end loop

end loop

Evaluate the near field interactions:

loop over all leaf boxes τ

u(Jτ ) = u(Jτ ) + A(Jτ , Jτ ) q(Jτ ) +
∑

σ∈L(nei)
τ

A(Jτ , Jσ) q(Jσ)

end



To get the asymptotic cost down further, we need a hierarchical tree structure on

the computational domain:

Level 0

1

Level 1

2

3

4

5

Level 2

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Level 3

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85



We are given N locations and seek the potential at each location.



How do you find the potential at the locations marked in blue?



Tessellate the remainder of the domain using as large boxes as you can, with the

constraint that the target box has to be well-separated from every box that is used.



Then replace the original charges in each well-separated box by the corresponding

multipole expansion.

The work required to evaluate one potential is now O(logN).



Cost of the multi-level Barnes-Hut algorithm:

Suppose there are L levels in the tree, and that there are about Nbox particles in

each box so that L ≈ log4(N/Nbox).

We let Nbox is a fixed number (say Nbox ≈ 200) so L ∼ log(N).

Observation: On each level, there are at most 27 well-separated boxes.

For each particle xi, we need to do the following:

Step 1: Evaluate the P outgoing moments for the L boxes holding xi: LP

Step 2: Evaluate potentials from out-going expansions: 27LP

Step 3: Evaluate potentials from neighbors: 9Nbox

Using that P is a smallish constant (say P = 20) we find

cost ∼ N L ∼ N log(N).

This is not bad.



Multi-level Barnes-Hut

Compute the outgoing expansions on all boxes:

loop over all boxes τ on all levels

q̂τ = Cτ q(Jτ )

end loop

For each box τ tessellate Ω into a minimal collection of boxes from which τ is

well-separated, and evaluate the far-field potential:

u = 0

loop over all boxes τ

loop over all σ ∈ L(BH)
τ (i.e. all σ that are well-separated from τ)

u(Jτ ) = u(Jτ ) + B̃τ,σ q̂σ

end loop

end loop

Evaluate the near field interactions:

loop over all leaf boxes τ

u(Jτ ) = u(Jτ ) + A(Jτ , Jτ ) q(Jτ ) +
∑

σ∈L(nei)
τ

A(Jτ , Jσ) q(Jσ)

end



In the Barnes-Hut method, there is a need to construct for each box τ , the list

L(BH)
τ

which identifies a “minimal” tessellation of Ω into boxes from which τ is

well-separated.

Example: The box τ is marked with blue.

L(BH)
τ = {???}



How do you find the tessellation?
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How do you find the tessellation?

Hint: Consider which “level” each box belongs to.
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Definition:

For a box τ , define its interaction list L(int)
τ as the set of all boxes σ such that:

1. σ and τ populate the same level of the tree.

2. σ and τ are well-separated.

3. The parents of σ and τ touch.



Example: Consider box τ = 10.

10



Example: Consider box τ = 10.

10

The green boxes are the neighbors of τ ’s parents.



Example: Consider box τ = 10.

10

The green boxes are the children of the neighbors of τ ’s parents.



Example: Consider box τ = 10.

10

6 8 14

15

16

17

18

19

20

21

The green boxes are the children of the neighbors of τ ’s parents.

Only some of them are well-separated from τ .

We find: L(int)
τ = {6, 8, 14, 15, 16, 17, 18, 19, 20, 21}



Example: Consider box τ = 40.

40



Example: Consider box τ = 40.
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The green boxes are the neighbors of τ ’s parents.



Example: Consider box τ = 40.

40

The green boxes are the children of the neighbors of τ ’s parents.



Example: Consider box τ = 40.

40
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The green boxes are the children of the neighbors of τ ’s parents.

Only some of them are well-separated from τ .

We find: L(int)
τ = {26, 28, 34, 36, 37, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53}



Example: Consider box τ = 161.
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Example: Consider box τ = 161.
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The green boxes are the neighbors of τ ’s parents.



Example: Consider box τ = 161.

161

The green boxes are the children of the neighbors of τ ’s parents.



Example: Consider box τ = 161.

161
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157 163 165

The green boxes are the children of the neighbors of τ ’s parents.

Only some of them are well-separated from τ .

We find: L(int)
τ = {106, 107, 108, 109, 114, 115, 116, 117, 138, 139, 140, 141, 184, 185,

187, 188, 189, 150, 151, 152, 153, 154, 155, 156, 157, 163, 165}



Now let L(anc)
τ denote the list of all ancestors (parent, grand-parent,

great-grand-parent, etc.). Then

L(BH)
τ = L(int)

τ ∪
∪

σ∈L(anc)
τ

L(int)
σ
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42

43

44

45

48

49
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51

52

53
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21



161 40

26 28 34 36

37

42

43

44

45

48

49

50
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10

6 8 14

15

16

17

18
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21

L(anc)
161 = {3, 10, 40}

L(BH)
161 = L(int)

3 ∪ L(int)
10 ∪ L(int)

40 ∪ L(int)
161

= {6, 8, 14, 15, 16, 17, 18, 19, 20, 21, 26, 28, 34, 36, 37, 42, 43, 44, 45, 48, 49,
50, 51, 52, 53, 106, 107, 108, 109, 114, 115, 116, 117, 138, 139, 140, 141, 150,

151, 152, 153, 154, 155, 156, 157, 163, 165, 184, 185, 187, 188, 189}


