APPM4720/5720 - Homework 4

Problem 4.1: Define a contour Γ_{1} via

$$
\Gamma_{1}=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+2 x_{2}^{2}=1\right\} .
$$

Let Ω_{1} denote the domain interior to Γ_{1}. Define points $a, b \in \Gamma_{1}$ and $c \in \Omega_{1}$ via

$$
a=(1,0), \quad b=(\cos (0.7),(1 / \sqrt{2}) \sin (0.7)), \quad c=(0.3,0.2) .
$$

Let u be the unique solution to

$$
\left\{\begin{align*}
-\Delta u(x) & =0, & & x \in \Omega_{1}, \tag{1}\\
u(x) & =f(x), & & x \in \Gamma_{1},
\end{align*}\right.
$$

where

$$
f\left(x_{1}, x_{2}\right)=x_{1} e^{\sin \left(10 x_{2}\right)} .
$$

Let u have the representation

$$
u(x)=[S \sigma](x)=\int_{\Gamma_{1}} \frac{1}{2 \pi} \log \frac{R}{\left|x-x^{\prime}\right|} \sigma\left(x^{\prime}\right) d l\left(x^{\prime}\right)
$$

where R is chosen so that $R /\left|x-x^{\prime}\right| \geq 2$ for all $x, x^{\prime} \in \Gamma$. (Say $R=10$.)
Your task is to form an equation for σ, discretize this equation, solve the equation, and then to evaluate the function u.

Let N denote the number of degrees of freedom in your approximation, and include in your solution the following table (with values filled in where the question marks are):

N	$\sigma(a)$	$\sigma(b)$	$u(c)$
100	$?$	$?$	$?$
200	$?$	$?$	$?$
400	$?$	$?$	$?$
800	$?$	$?$	$?$
\vdots	\vdots	\vdots	\vdots

Include as large N as your computer can handle in a reasonable amount of time, and estimate the convergence rate for each column.

Hint: In developing the code, it might be helpful to solve some Laplace problems for which you know the solution. For instance, set $v\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$ and $f=v(\Gamma)$. Or, pick a point z outside of Γ, and set $v(x)=\log |x-z|$. (If you try the latter option, what happens if you pick z very close to Γ ?)

The geometry of Problems 4.1 and 4.3.

The geometry of Problems 4.2 and 4.4.
Problem 4.2: Repeat Problem 4.1, but now set

$$
\begin{aligned}
& G_{1}(t)=1.5 \cos (t)+0.1 \cos (6 t)+0.1 \cos (4 t), \\
& G_{2}(t)=\sin (t)+0.1 \sin (6 t)-0.1 \sin (4 t)
\end{aligned}
$$

and define

$$
\Gamma_{2}=\left\{x=\left(G_{1}(t), G_{2}(t)\right): t \in[0,2 \pi)\right\} .
$$

The Dirichlet data f is the same. Report $\sigma(d)$ and $u(e)$ for the points

$$
d=(1.7,0), \quad e=(0.3,0.5) .
$$

Problem 4.3: Repeat Problem 4.1 (with the contour Γ_{1}) but now use the Ansatz

$$
u(x)=[D \sigma](x)=\int_{\Gamma_{1}} \frac{n\left(x^{\prime}\right) \cdot\left(x-x^{\prime}\right)}{2 \pi\left|x-x^{\prime}\right|^{2}} \sigma\left(x^{\prime}\right) d l\left(x^{\prime}\right)
$$

where $n\left(x^{\prime}\right)$ is the outwards pointing unit normal at x^{\prime}.

Problem 4.4: Repeat Problem 4.2 (with the contour Γ_{2}) but now use the Ansatz

$$
u(x)=[D \sigma](x)=\int_{\Gamma_{2}} \frac{n\left(x^{\prime}\right) \cdot\left(x-x^{\prime}\right)}{2 \pi\left|x-x^{\prime}\right|^{2}} \sigma\left(x^{\prime}\right) d l\left(x^{\prime}\right)
$$

where $n\left(x^{\prime}\right)$ is the outwards pointing unit normal at x^{\prime}.

Hint: In debugging your codes for the double layer potential, you may find the third Green identity useful (in particular that $[D 1](x)=-1$ when $x \in \Omega$, and $[D 1](x)=-1 / 2$ when $x \in \Gamma$).

Hint: In my codes, I represent a contour Γ in an object C of size $6 \times N$, where N is the number of discretization points. Column i of C encodes the data for parameter point t_{i} :

$$
\begin{aligned}
& \mathrm{C}(1, \mathrm{i})=G_{1}\left(t_{i}\right) \\
& \mathrm{C}(2, \mathrm{i})=G_{1}^{\prime}\left(t_{i}\right) \\
& \mathrm{C}(3, \mathrm{i})=G_{1}^{\prime \prime}\left(t_{i}\right) \\
& \mathrm{C}(4, \mathrm{i})=G_{2}\left(t_{i}\right) \\
& \mathrm{C}(5, \mathrm{i})=G_{2}^{\prime}\left(t_{i}\right) \\
& \mathrm{C}(6, \mathrm{i})=G_{2}^{\prime \prime}\left(t_{i}\right)
\end{aligned}
$$

