APPM4720/5720 - Homework 2

Hand in solutions to at least three of the following four problems.

Question 2.1: Consider three different ways of computing the DFT:
(a) Apply it directly via the formula

$$
\hat{\boldsymbol{x}}(n)=\left[\mathrm{F}_{N} \boldsymbol{x}\right](n)=\sum_{m=0}^{N-1} e^{-i 2 \pi m n / N} \boldsymbol{x}(m), \quad n=0,1,2, \ldots, N-1 .
$$

(It is strongly recommended to vectorize the matrix-vector product.)
(b) Build your own implementation of the basic FFT algorithm described in the course notes. (This is the Cooley-Tukey algorithm.)
(c) Apply the built-in Matlab command FFT. (Last time I checked, Matlab used the FFTW package, but this may have changed.)

Measure the asymptotic timing for each of the methods, and comment on what you observe.

Question 2.2: Solve (analytically) the Laplace equation with Dirichlet boundary data on a domain exterior to a unit disc. In other words, let Ω and Γ be defined by

$$
\begin{aligned}
\Omega & =\left\{x \in \mathbb{R}^{2}:|x|>1\right\} \\
\Gamma & =\left\{x \in \mathbb{R}^{2}:|x|=1\right\},
\end{aligned}
$$

and consider the boundary value problem

$$
\left\{\begin{aligned}
-\Delta u(x) & =0, & & x \in \Omega, \\
u(x) & =g(x), & & x \in \Gamma .
\end{aligned}\right.
$$

You may assume that $g \in L^{1} \cap L^{2}$, that

$$
\int_{0}^{2 \pi} g(\cos \theta, \sin \theta)=0
$$

and then require the solution u to decay at infinity.

Question 2.3: In this problem, we will numerically solve the equation

$$
\left\{\begin{aligned}
-u^{\prime \prime}(x) & =f(x), \quad x \in(0, \pi) \\
u(0) & =0 \\
u(\pi) & =0
\end{aligned}\right.
$$

for a few different right hand sides. For each given f, compute the solution using either the basis functions $\{\sqrt{2 / \pi} \sin (n x)\}_{n=1}^{\infty}$, or the basis functions $\left\{\sqrt{1 / \pi} e^{2 i n x}\right\}_{n \in \mathbb{Z}}$ (with appropriate corrections for the boundary conditions). Consider the following choices of f :
(a) $f(x)=e^{(\sin x)^{2}}$.
(b) $f(x)=e^{\sqrt{x}}$.
(c) $f(x)=\cos (100 x)$.
(d) $f(x)=\cos (100.1 x)$.
(e) $f(x)=|x-1|^{-0.25}$.
(f) $f(x)= \begin{cases}0 & 0<x \leq 1 \\ 1 & 1<x \leq 2 \\ 2 & 1<x<\pi\end{cases}$

Your solution should contain the following: (i) A plot of the solution u. (ii) Plots of $\left|\hat{f}_{n}\right|$ and $\left|\hat{u}_{n}\right|$ versus n for each of the functions and a discussion of the rates of decay.

Question 2.4: Construct a program that uses Fourier methods to solve the heat equation

$$
\left\{\begin{aligned}
\frac{d^{2} u}{d x^{2}} & =\frac{d u}{d t}, & & x \in(0, \pi), t>0 \\
u(0, t) & =0, & & t>0 \\
u(\pi, t) & =0, & & t>0 \\
u(x, 0) & =f(x), & & 0<x<\pi \\
u_{t}(x, 0) & =0, & &
\end{aligned}\right.
$$

where $f(x)=e^{(\sin x)^{2}}$ or $f(x)=|x-1|^{-0.25}$. For both choices of f, produce plots of the solution at a few different times t (your choice!). In addition, produce a plot of the function

$$
U(t)=\int_{0}^{\pi}|u(x, t)|^{2} d x .
$$

Repeat the exercise, but now consider the wave equation

$$
\left\{\begin{aligned}
\frac{d^{2} v}{d x^{2}} & =\frac{d^{2} v}{d t^{2}}, & & x \in(0, \pi), t>0 \\
v(0, t) & =0, & & t>0 \\
v(\pi, t) & =0, & & t>0 \\
v(x, 0) & =f(x), & & 0<x<\pi \\
v_{t}(x, 0) & =0, & &
\end{aligned}\right.
$$

Produce a plot of

$$
V(t)=\int_{0}^{\pi}|v(x, t)|^{2} d x
$$

Hint: For your own amusement, you may want to create animations of the solutions using the Matlab movie command.

