
APPM4720/5720 — Homework 1

The answers to Questions 1.2 and 1.3 are provided on the webpage to serve as a template. Please
turn in answers to Questions 1.1 and 1.4; and, if you like, 1.5.

Question 1.1: Derive the Simpson rule and prove that it has an O(h4) error.

Hint: To determine the coefficients in the rule, consider the formula∫ h

−h
f(x) dx ≈ a f(−h) + b f(0) + c f(h).

Making the formula exact for f(x) = 1, f(x) = x, f(x) = x2 yields three equations for three
unknowns. Then to estimate the error, notice that if f is any function with four continuous
derivatives, then

f(x) = f(0) + x f ′(0) +
1

2
x2 f ′′(0) +

1

6
x3 f (3)(0) +

1

24
x4 f (4)(ξ)

for some ξ such that |ξ| ≤ |x|.

Question 1.2: The purpose of this question is to demonstrate the importance of avoiding loops
when writing Matlab programs. Consider the trapezoidal rule

I ≈ h

1

2
f(x0) +

n−1∑
j=1

f(xj) +
1

2
f(xn)

 ,

where n is the number of quadrature points and

h =
b− a

n
, xj = a+ h j.

Consider the following two Matlab functions:

function I = trapezoidal1(f,a,b,n)

h = (b-a)/n;

I = 0.5*h*(f(a) + f(b));

for icount = 1:(n-1)

I = I + h*f(a+icount*h);

end

return

function I = trapezoidal2(f,a,b,n)

h = (b-a)/n;

w = h*[0.5,ones(1,n-1),0.5];

x = linspace(a,b,n+1);

I = sum(w.*f(x));

return
1

Let tj = tj(n) denote the time required for Matlab to execute “version j” of the program. Show via
numerical examples that the ratios tj(n)/n converge to some numbers cj as n grows, and estimate
these numbers.

Hint: The timing functions tic and toc will not give accurate answers when the interval between
them is very short. A way around this is to execute the function you want to time (say) 1000
times, and then divide the measured time by 1000.

Question 1.3: Implement the trapezoidal rule and the Simpson rule efficiently. Then measure the
convergence order of your functions for a variety of different (You know them, of course, but let
us measure them as an exercise.) In this exercise, you may use the built-in function

I = quad(f,a,b,tol)

to compute the “exact” answer. Use your functions to estimate the integral

I =

∫ 1

0
cos

(
1

0.01 + x2

)
dx.

Produce (loglog) graphs that plot the error in your function versus h, where h = 1/n and

n = 100, 200, 400, 800, 1600, . . . , 51 200.

How would you estimate the convergence order if you do not have a “reference” function to compute
the “exact” answer?

Question 1.4: Repeat Question 3, but now use Gaussian quadrature. In other words, construct a
function with calling sequence

function I = gaussquad(f,a,b,n,p)

that uses Gaussian quadrature on n panels, with p points on each panel. Estimate computationally
the “order” of the method as n and p increase. Produce a graph that plots the accuracy of the
Simpson rule versus the accuracy of the Gaussian rule for p = 5, 10, 15, 20 (for the same number
of function evaluations).

Hint: I believe that there is no built-in Matlab function for generating Gaussian quadrature nodes
and weights. On the webpage you’ll find a simple function lgwt.m that does this task.

Question 1.5: Write a function for estimating the integral

I =

∫ d

c

∫ b

a
f(x1, x2) dx1 dx2.

You may use either Gaussian or Newton-Cotes quadrature. Then estimate the integrals

I1(k) =

∫ 1

0

∫ 1

0
cos(k x1 x

2
2)

1

1 + cos(x1)
dx1 dx2,

I2(k) =

∫ 1

0

∫ 1

0
| cos(k x1 x22)|

1

1 + cos(x1)
dx1 dx2,

for different values of the positive integer k. Roughly how large can k be for you to quickly (say
within a second) get 10 accurate digits?

2

