APPM4720/5720 - Homework 1

The answers to Questions 1.2 and 1.3 are provided on the webpage to serve as a template. Please turn in answers to Questions 1.1 and 1.4; and, if you like, 1.5.

Question 1.1: Derive the Simpson rule and prove that it has an $O\left(h^{4}\right)$ error.

Hint: To determine the coefficients in the rule, consider the formula

$$
\int_{-h}^{h} f(x) d x \approx a f(-h)+b f(0)+c f(h) .
$$

Making the formula exact for $f(x)=1, f(x)=x, f(x)=x^{2}$ yields three equations for three unknowns. Then to estimate the error, notice that if f is any function with four continuous derivatives, then

$$
f(x)=f(0)+x f^{\prime}(0)+\frac{1}{2} x^{2} f^{\prime \prime}(0)+\frac{1}{6} x^{3} f^{(3)}(0)+\frac{1}{24} x^{4} f^{(4)}(\xi)
$$

for some ξ such that $|\xi| \leq|x|$.

Question 1.2: The purpose of this question is to demonstrate the importance of avoiding loops when writing Matlab programs. Consider the trapezoidal rule

$$
I \approx h\left(\frac{1}{2} f\left(x_{0}\right)+\sum_{j=1}^{n-1} f\left(x_{j}\right)+\frac{1}{2} f\left(x_{n}\right)\right)
$$

where n is the number of quadrature points and

$$
h=\frac{b-a}{n}, \quad x_{j}=a+h j .
$$

Consider the following two Matlab functions:

```
function I = trapezoidal1(f,a,b,n)
h = (b-a)/n;
I = 0.5*h*(f(a) + f(b));
for icount = 1:(n-1)
    I = I + h*f(a+icount*h);
end
return
function I = trapezoidal2(f,a,b,n)
h = (b-a)/n;
w = h*[0.5,ones(1,n-1),0.5];
x = linspace(a,b,n+1);
I = sum(w.*f(x));
return
```

Let $t_{j}=t_{j}(n)$ denote the time required for Matlab to execute "version j " of the program. Show via numerical examples that the ratios $t_{j}(n) / n$ converge to some numbers c_{j} as n grows, and estimate these numbers.

Hint: The timing functions tic and toc will not give accurate answers when the interval between them is very short. A way around this is to execute the function you want to time (say) 1000 times, and then divide the measured time by 1000 .

Question 1.3: Implement the trapezoidal rule and the Simpson rule efficiently. Then measure the convergence order of your functions for a variety of different (You know them, of course, but let us measure them as an exercise.) In this exercise, you may use the built-in function

$$
I=\operatorname{quad}(f, a, b, t o l)
$$

to compute the "exact" answer. Use your functions to estimate the integral

$$
I=\int_{0}^{1} \cos \left(\frac{1}{0.01+x^{2}}\right) d x
$$

Produce (loglog) graphs that plot the error in your function versus h, where $h=1 / n$ and

$$
n=100,200,400,800,1600, \ldots, 51200
$$

How would you estimate the convergence order if you do not have a "reference" function to compute the "exact" answer?

Question 1.4: Repeat Question 3, but now use Gaussian quadrature. In other words, construct a function with calling sequence

$$
\text { function } I=\operatorname{gaussquad}(f, a, b, n, p)
$$

that uses Gaussian quadrature on n panels, with p points on each panel. Estimate computationally the "order" of the method as n and p increase. Produce a graph that plots the accuracy of the Simpson rule versus the accuracy of the Gaussian rule for $p=5,10,15,20$ (for the same number of function evaluations).

Hint: I believe that there is no built-in Matlab function for generating Gaussian quadrature nodes and weights. On the webpage you'll find a simple function lgwt.m that does this task.

Question 1.5: Write a function for estimating the integral

$$
I=\int_{c}^{d} \int_{a}^{b} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
$$

You may use either Gaussian or Newton-Cotes quadrature. Then estimate the integrals

$$
\begin{aligned}
& I_{1}(k)=\int_{0}^{1} \int_{0}^{1} \cos \left(k x_{1} x_{2}^{2}\right) \frac{1}{1+\cos \left(x_{1}\right)} d x_{1} d x_{2} \\
& I_{2}(k)=\int_{0}^{1} \int_{0}^{1}\left|\cos \left(k x_{1} x_{2}^{2}\right)\right| \frac{1}{1+\cos \left(x_{1}\right)} d x_{1} d x_{2}
\end{aligned}
$$

for different values of the positive integer k. Roughly how large can k be for you to quickly (say within a second) get 10 accurate digits?

