APPM5450 - Applied Analysis: Section exam 3 - Solutions

1:00pm - 1:40pm, April 28, 2017. Closed books.
Problem 1: $(6 \mathrm{p})$ Consider the function $f_{n}(x)=(1 / x)^{1 / 3} \chi_{[1, n]}$ so that

$$
f_{n}(x)= \begin{cases}x^{-1 / 3} & \text { when } x \in[1, n], \\ 0 & \text { when } x \notin[1, n] .\end{cases}
$$

For which $p \in[1, \infty]$ does $\left(f_{n}\right)_{n=1}^{\infty}$ form a Cauchy sequence in $L^{p}(\mathbb{R})$?

Solution:

The case $p=\infty$: Suppose $N \leq m<n$. Then

$$
\left\|f_{m}-f_{n}\right\|_{\infty}=\sup _{m<x \leq n}\left|x^{-1 / 3}\right|=m^{-1 / 3} \leq N^{-1 / 3} \rightarrow 0, \quad \text { as } N \rightarrow \infty
$$

So clearly $\left(f_{n}\right)$ is Cauchy.
The case $p \in[1, \infty)$: Suppose $N \leq m<n$. Then

$$
\left\|f_{m}-f_{n}\right\|_{p}^{p}=\int_{m}^{n}\left|x^{-1 / 3}\right|^{p} d x=\int_{m}^{n} x^{-p / 3} d x
$$

If $p>3$, then we find that

$$
\left\|f_{m}-f_{n}\right\|_{p}^{p} \leq \int_{N}^{\infty} x^{-p / 3} d x=\left[\frac{1}{1-p / 3} x^{1-p / 3}\right]_{N}^{\infty}=\frac{N^{1-p / 3}}{p / 3-1} \rightarrow 0, \quad \text { as } N \rightarrow \infty
$$

so clearly $\left(f_{n}\right)$ is Cauchy in this case. If $p \leq 3$, then we easily see that for any m, we have

$$
\left\|f_{m}-f_{n}\right\|_{p}^{p} \rightarrow \infty, \quad \text { as } n \rightarrow \infty
$$

so $\left(f_{n}\right)$ is not Cauchy in this case.
Answer: For $p \in(3, \infty]$.

Problem 2: (7p) Define for $n=1,2,3, \ldots$ the functions $f_{n}=\chi_{[-n, n]}$ so that

$$
f_{n}(x)= \begin{cases}1 & \text { when } x \in[-n, n] \\ 0 & \text { when } x \notin[-n, n] .\end{cases}
$$

(a) (4p) Specify the Fourier transform \hat{f}_{n}.
(b) (3p) Consider the sequence $\left(\hat{f}_{n}\right)_{n=1}^{\infty}$. Specify its limit point in $\mathcal{S}^{*}(\mathbb{R})$.

Solution:

(a) With $\beta=1 / \sqrt{2 \pi}$ we have, directly from the definition, exploiting that f_{n} is even,

$$
\hat{f}_{n}(t)=\beta \int_{-\infty}^{\infty} e^{-i x t} f_{n}(x) d x=\beta \int_{-n}^{n} \cos (x t) d x=\beta\left[\frac{\sin (x t)}{t}\right]_{-n}^{n}=2 \beta \frac{\sin (n t)}{t}=\sqrt{\frac{2}{\pi}} \frac{\sin (n t)}{t} .
$$

(b) Determining the limit of $\left(\hat{f}_{n}\right)$ seems a little tricky, at least to me. But: setting $f(x)=1$, we trivially have $f_{n} \rightarrow f$ in \mathcal{S}^{*}. Since $\mathcal{F}: \mathcal{S}^{*} \rightarrow \mathcal{S}^{*}$ is continuous, it follows that $\hat{f}_{n} \rightarrow \hat{f}$. Now all that remains is to determine \hat{f}. We recall that $\mathcal{F}^{*} \delta=1 / \sqrt{2 \pi}$. It follows that $\mathcal{F} 1=\sqrt{2 \pi} \delta$.

Problem 3: (9p) Consider the function $f(x)=e^{-x^{2} / 2}$ as a member of $L^{2}(\mathbb{R})$. Recall that its Fourier transform is $\hat{f}(t)=e^{-t^{2} / 2}$.
(a) $(3 \mathrm{p})$ Set $g(x)=e^{-(x-1)^{2} / 2}$. Specify \hat{g}.
(b) $(3 \mathrm{p})$ Set $h(x)=x e^{-x^{2} / 2}$. Specify \hat{h}.
(c) $(3 \mathrm{p})$ Set $k(x)=e^{-x^{2}}$. Specify \hat{k}.

Solution:

(a) Use the change of variable $y=x-1$ in the Fourier integral:
$\hat{g}(t)=\beta \int_{-\infty}^{\infty} e^{-i x t} f(x-1) d x=\beta \int_{-\infty}^{\infty} e^{-i(y+1) t} f(y) d x=\beta e^{-i t} \int_{-\infty}^{\infty} e^{-i y t} f(y) d x=e^{-i t} \hat{f}(t)=e^{-i t} e^{-t^{2} / 2}$.
(b) Use that the integrand and its derivative are absolutely integrable to get

$$
\hat{h}(t)=\beta \int_{-\infty}^{\infty} e^{-i x t} x f(x) d x=\beta \int_{-\infty}^{\infty}\left(i \frac{d}{d t} e^{-i x t}\right) f(x) d x=i \frac{d}{d t} \hat{f}(t)=-i t e^{-t^{2} / 2}
$$

(c) Use the change of variable $y=\sqrt{2} x$ in the Fourier integral

$$
\hat{k}(t)=\beta \int_{-\infty}^{\infty} e^{-i x t} f(\sqrt{2} x) d x=\beta \int_{-\infty}^{\infty} e^{-i y t / \sqrt{2}} f(y) d y / \sqrt{2}=\hat{f}(t / \sqrt{2}) / \sqrt{2}=\frac{1}{\sqrt{2}} e^{-t^{2} / 4}
$$

Note: You do not need to derive the expressions like I did here. Simply invoking the theorem in the text book is fine. If the idea of a solution was correct with just an error of a sign or a scaling constant, then $2 p$ was awarded. (I'm not 100% sure the signs etc in the formalas above are correct. ..)

Problem 4: (18p) Let $p, q \in[1, \infty)$. Set $I=[0,1]$. Circle the correct answer. No penalties for guessing (so 3p for correct answer, 0p for incorrect or no answer).
(a) (3p) If $p<q$, then it is necessarily the case that $L^{p}(\mathbb{R}) \subseteq L^{q}(\mathbb{R})$. TRUE / FALSE.
(b) (3p) If $q<p$, then it is necessarily the case that $L^{p}(\mathbb{R}) \subseteq L^{q}(\mathbb{R})$. TRUE / FALSE.
(c) (3p) If $p<q$, then it is necessarily the case that $L^{p}(I) \subseteq L^{q}(I)$. TRUE / FALSE.
(d) (3p) If $q<p$, then it is necessarily the case that $L^{p}(I) \subseteq L^{q}(I)$. TRUE / FALSE.
(e) (6p) Provide on a separate sheet motivations for two of your answers (pick any two).

Solution:

(a) FALSE. A counterexample of a function $f \in L^{p}(\mathbb{R}) \backslash L^{q}(\mathbb{R})$ is

$$
f(x)=x^{-\alpha} \chi_{(0,1)},
$$

where α is chosen so that $1 / q<\alpha<1 / p$.
(b) FALSE. A counterexample of a function $f \in L^{p}(\mathbb{R}) \backslash L^{q}(\mathbb{R})$ is

$$
f(x)=x^{-\alpha} \chi_{(1, \infty)},
$$

where α is chosen so that $1 / p<\alpha<1 / q$.
(c) FALSE. The counter-example in (a) works here too.
(d) TRUE. Suppose $f \in L^{p}(I)$ and that $q<p$. Then

$$
\|f\|_{L^{q}(I)}^{q}=\int_{0}^{1}|f(x)|^{q} d x \leq \int_{0}^{1}\left(1+|f(x)|^{p}\right) d x=1+\|f\|_{p}^{p}<\infty .
$$

Alternatively, and with a bit more flair, invoke the Hölder inequality:

$$
\begin{aligned}
& \|f\|_{L^{q}(I)}^{q}=\int_{0}^{1}|f(x)|^{q} d x \leq\{\text { Hölder with parameters } n=p / q \text { and } m=p /(p-q)\} \leq \\
& \leq\left(\int_{0}^{1}|f(x)|^{q n} d x\right)^{1 / n}\left(\int_{0}^{1}|1|^{m} d x\right)^{1 / m}=\left(\int_{0}^{1}|f(x)|^{p} d x\right)^{q / p}=\|f\|_{L^{p}(I)}^{q} .
\end{aligned}
$$

Note: Providing a counter-example for some specific choices of p and q works as a way to build intuition but is not an absolutely correct answer. If you prove, say, that L^{1} is not a subset of L^{2}, then it does not logically follow that $L^{1.5}$ is not a subset of L^{2}. I only deducted very minor amounts for this error, but please be aware going forwards that this is not mathematically correct.

Problem 7: (20p) Let Ω be an interval in \mathbb{R}. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of real-valued measurable functions on Ω that converges pointwise. In other words, there is a function f such that

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x), \quad \forall x \in \Omega
$$

Let $g \in L^{2}(\Omega)$, and define, whenever the integral exists,

$$
\begin{equation*}
\alpha_{n}=\int_{\Omega} \frac{f_{n}(x)}{1+\left|f_{n}(x)\right|} g(x) d x \tag{1}
\end{equation*}
$$

(a) (10p) Let $\Omega=[0,1]$. Prove that the integral in (1) is a well-defined Lebesgue integral that evaluates to a finite number α_{n}, and that

$$
\lim _{n \rightarrow \infty} \alpha_{n}=\int_{\Omega} \frac{f(x)}{1+|f(x)|} g(x) d x
$$

(b) (10p) Let $\Omega=\mathbb{R}$. Provide examples of functions $\left(f_{n}\right)$ and g such that (1) is well-defined as a Lebesgue integral for every n, but so that the limit of $\left(\alpha_{n}\right)$ either does not exist, or does not equal $\int_{\Omega} \frac{f(x)}{1+|f(x)|} g(x) d x$.

Solution:

(a) Observe that the integrand is bounded as follows:

$$
\left|\frac{f_{n}(x)}{1+\left|f_{n}(x)\right|} g(x)\right|=\frac{\left|f_{n}(x)\right|}{1+\left|f_{n}(x)\right|}|g(x)| \leq|g(x)| .
$$

Moreover, using the Cauchy-Schwartz inequality, we establish that

$$
\int_{\Omega}|g(x)| d x \leq\left(\int_{\Omega}|g(x)|^{2} d x\right)^{1 / 2}\left(\int_{\Omega} 1^{2} d x\right)^{1 / 2}=\|g\|_{L^{2}(\Omega)}<\infty .
$$

This means that the Lebesgue integral is well-defined, that each α_{n} evaluates to a finite complex number, and that the Lebesgue Dominated Convergence Theorem applies, so we can take limits under the integral

$$
\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \int_{\Omega} \frac{f_{n}(x)}{1+\left|f_{n}(x)\right|} g(x) d x \stackrel{\mathrm{LDCT}}{=} \int_{\Omega} \lim _{n \rightarrow \infty} \frac{f_{n}(x)}{1+\left|f_{n}(x)\right|} g(x) d x=\int_{\Omega} \frac{f(x)}{1+|f(x)|} g(x) d x
$$

(b) Observe that since $m(\Omega)=\infty$, we do not know that $g \in L^{1}(\Omega)$ in this case. For a counterexample, use, e.g,

$$
g(x)=\frac{1}{x} \chi_{(1, \infty)}(x), \quad \text { and } \quad f_{n}(x)=\chi_{(n, \infty)}(x)
$$

Then

$$
\alpha_{n}=\int_{\Omega} \frac{f_{n}(x)}{1+\left|f_{n}(x)\right|} g(x) d x=\int_{n}^{\infty} \frac{1}{1+1} \frac{1}{x} d x=\infty .
$$

But the pointwise limit f is zero in this case, so

$$
\int_{\Omega} \frac{f(x)}{1+|f(x)|} g(x) d x=\int_{\Omega} 0 g(x) d x=0 .
$$

