APPM5450 — Applied Analysis: Section exam 3

1:00pm – 1:40pm, April 28, 2017. Closed books.

The in-class part of the exam consists of Problems 1 - 4. This needs to be submitted by 1:40pm to allow time for FCQs! No motivations necessary for any of these problems except 4(e).

Problem 1: (6p) Consider the function $f_n(x) = (1/x)^{1/3} \chi_{[1,n]}$ so that $f_n(x) = \begin{cases} x^{-1/3} & \text{when } x \in [1,n], \\ 0 & \text{when } x \notin [1,n]. \end{cases}$

For which $p \in [1, \infty]$ does $(f_n)_{n=1}^{\infty}$ form a Cauchy sequence in $L^p(\mathbb{R})$?

Problem 2: (7p) Define for n = 1, 2, 3, ... the functions $f_n = \chi_{[-n,n]}$ so that

$$f_n(x) = \begin{cases} 1 & \text{when } x \in [-n, n], \\ 0 & \text{when } x \notin [-n, n]. \end{cases}$$

- (a) (4p) Specify the Fourier transform \hat{f}_n .
- (b) (3p) Consider the sequence $(\hat{f}_n)_{n=1}^{\infty}$. Specify its limit point in $\mathcal{S}^*(\mathbb{R})$.

Problem 3: (9p) Consider the function $f(x) = e^{-x^2/2}$ as a member of $L^2(\mathbb{R})$. Recall that its Fourier transform is $\hat{f}(t) = e^{-t^2/2}$.

- (a) (3p) Set $g(x) = e^{-(x-1)^2/2}$. Specify \hat{g} .
- (b) (3p) Set $h(x) = x e^{-x^2/2}$. Specify \hat{h} .
- (c) (3p) Set $k(x) = e^{-x^2}$. Specify \hat{k} .

Problem 4: (18p) Let $p, q \in [1, \infty)$. Set I = [0, 1]. Circle the correct answer. No penalties for guessing (so 3p for correct answer, 0p for incorrect or no answer).

- (a) (3p) If p < q, then it is necessarily the case that $L^p(\mathbb{R}) \subseteq L^q(\mathbb{R})$. TRUE / FALSE.
- (b) (3p) If q < p, then it is necessarily the case that $L^p(\mathbb{R}) \subseteq L^q(\mathbb{R})$. TRUE / FALSE.
- (c) (3p) If p < q, then it is necessarily the case that $L^p(I) \subseteq L^q(I)$. TRUE / FALSE.
- (d) (3p) If q < p, then it is necessarily the case that $L^p(I) \subseteq L^q(I)$. TRUE / FALSE.
- (e) (6p) Provide on a separate sheet motivations for two of your answers (pick any two).

Problem 5: (10p) Provide a motivation for your answer to Problem 1.

Problem 6: (10p) Provide motivations for your answers to Problem 2.

Problem 7: (20p) Let Ω be an interval in \mathbb{R} . Let $(f_n)_{n=1}^{\infty}$ be a sequence of real-valued measurable functions on Ω that converges *pointwise*. In other words, there is a function f such that

$$f(x) = \lim_{n \to \infty} f_n(x), \qquad \forall x \in \Omega.$$

Let $g \in L^2(\Omega)$, and define, whenever the integral exists,

(1)
$$\alpha_n = \int_{\Omega} \frac{f_n(x)}{1 + |f_n(x)|} g(x) \, dx$$

(a) (10p) Let $\Omega = [0, 1]$. Prove that the integral in (1) is a well-defined Lebesgue integral that evaluates to a finite number α_n , and that

$$\lim_{n \to \infty} \alpha_n = \int_{\Omega} \frac{f(x)}{1 + |f(x)|} g(x) \, dx.$$

(b) (10p) Let $\Omega = \mathbb{R}$. Provide examples of functions (f_n) and g such that (1) is well-defined as a Lebesgue integral for every n, but so that the limit of (α_n) either does not exist, or does not equal $\int_{\Omega} \frac{f(x)}{1+|f(x)|} g(x) dx$.