APPM5450 - Applied Analysis: Section exam 3

1:00pm - 1:40pm, April 28, 2017. Closed books.
The in-class part of the exam consists of Problems 1-4. This needs to be submitted by 1:40pm to allow time for FCQs! No motivations necessary for any of these problems except 4(e).

Problem 1: $(6 \mathrm{p})$ Consider the function $f_{n}(x)=(1 / x)^{1 / 3} \chi_{[1, n]}$ so that

$$
f_{n}(x)= \begin{cases}x^{-1 / 3} & \text { when } x \in[1, n], \\ 0 & \text { when } x \notin[1, n] .\end{cases}
$$

For which $p \in[1, \infty]$ does $\left(f_{n}\right)_{n=1}^{\infty}$ form a Cauchy sequence in $L^{p}(\mathbb{R})$?

Problem 2: (7p) Define for $n=1,2,3, \ldots$ the functions $f_{n}=\chi_{[-n, n]}$ so that

$$
f_{n}(x)= \begin{cases}1 & \text { when } x \in[-n, n] \\ 0 & \text { when } x \notin[-n, n] .\end{cases}
$$

(a) (4p) Specify the Fourier transform \hat{f}_{n}.
(b) (3p) Consider the sequence $\left(\hat{f}_{n}\right)_{n=1}^{\infty}$. Specify its limit point in $\mathcal{S}^{*}(\mathbb{R})$.

Problem 3: (9p) Consider the function $f(x)=e^{-x^{2} / 2}$ as a member of $L^{2}(\mathbb{R})$. Recall that its Fourier transform is $\hat{f}(t)=e^{-t^{2} / 2}$.
(a) (3p) Set $g(x)=e^{-(x-1)^{2} / 2}$. Specify \hat{g}.
(b) (3p) Set $h(x)=x e^{-x^{2} / 2}$. Specify \hat{h}.
(c) (3p) Set $k(x)=e^{-x^{2}}$. Specify \hat{k}.

Problem 4: (18p) Let $p, q \in[1, \infty)$. Set $I=[0,1]$. Circle the correct answer. No penalties for guessing (so 3 p for correct answer, 0 p for incorrect or no answer).
(a) (3p) If $p<q$, then it is necessarily the case that $L^{p}(\mathbb{R}) \subseteq L^{q}(\mathbb{R})$. TRUE / FALSE.
(b) (3p) If $q<p$, then it is necessarily the case that $L^{p}(\mathbb{R}) \subseteq L^{q}(\mathbb{R})$. TRUE / FALSE.
(c) (3p) If $p<q$, then it is necessarily the case that $L^{p}(I) \subseteq L^{q}(I)$. TRUE / FALSE.
(d) (3p) If $q<p$, then it is necessarily the case that $L^{p}(I) \subseteq L^{q}(I)$. TRUE / FALSE.
(e) (6p) Provide on a separate sheet motivations for two of your answers (pick any two).

Problem 5: (10p) Provide a motivation for your answer to Problem 1.

Problem 6: (10p) Provide motivations for your answers to Problem 2.

Problem 7: (20p) Let Ω be an interval in \mathbb{R}. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of real-valued measurable functions on Ω that converges pointwise. In other words, there is a function f such that

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x), \quad \forall x \in \Omega .
$$

Let $g \in L^{2}(\Omega)$, and define, whenever the integral exists,

$$
\begin{equation*}
\alpha_{n}=\int_{\Omega} \frac{f_{n}(x)}{1+\left|f_{n}(x)\right|} g(x) d x . \tag{1}
\end{equation*}
$$

(a) (10p) Let $\Omega=[0,1]$. Prove that the integral in (1) is a well-defined Lebesgue integral that evaluates to a finite number α_{n}, and that

$$
\lim _{n \rightarrow \infty} \alpha_{n}=\int_{\Omega} \frac{f(x)}{1+|f(x)|} g(x) d x .
$$

(b) (10p) Let $\Omega=\mathbb{R}$. Provide examples of functions $\left(f_{n}\right)$ and g such that (1) is well-defined as a Lebesgue integral for every n, but so that the limit of $\left(\alpha_{n}\right)$ either does not exist, or does not equal $\int_{\Omega} \frac{f(x)}{1+|f(x)|} g(x) d x$.

