
APPM5450 — Applied Analysis: Section exam 2
1:00pm – 1:50pm, March 17, 2017.

Problem 1: (10p) Let H be a Hilbert space, and let A ∈ B(H).

(a) (5p) Define the spectrum σ(A).

(b) (5p) Suppose that A is skew-adjoint and that ‖A‖ = 2. Are there any complex numbers λ for
which you can say for sure that A− λI is one-to-one and onto?

Solution:

(b) Since A is skew-adjoint, you know that if Re(λ) 6= 0, then λ /∈ σ(A).

Since ‖A‖ = 2, you know that if |λ| > 2, then λ ∈ ρ(A).

Consequently, A− λI is necessarily one-to-one and onto if either |λ| > 2 or if Re(λ) 6= 0.

Problem 2: (10p) Let T ∈ S∗(R) be defined via T (ϕ) =

∫ ∞
−∞

log |x|ϕ(x) dx. Specify the derivative of T .

No motivation required.

Solution:

The derivative of T is the principal value of 1/x.

To prove this, note that

[DT ](ϕ) = −T (ϕ′) = lim
ε↘0

{
−
∫ −ε
−∞

log |x|ϕ′(x) dx−
∫ ∞
ε

log |x|ϕ′(x) dx

}
= lim

ε↘0

{
− [log |x|ϕ(x)]−ε−∞ +

∫ −ε
−∞

1

x
ϕ(x) dx− [log |x|ϕ(x)]∞ε +

∫ ∞
ε

1

x
ϕ′(x) dx

}
= lim

ε↘0

{
− log(ε)ϕ(−ε) +

∫ −ε
−∞

1

x
ϕ(x) dx+ log(ε)ϕ(ε) +

∫ ∞
ε

1

x
ϕ′(x) dx

}
= PV (1/x)(ϕ),

since limε↘0 log(ε)
(
ϕ(ε)− ϕ(−ε)

)
= 0.



Problem 3: (10p) No motivations required for these two problems.

(a) (5p) Let H be a Hilbert space, and let A ∈ B(H) be an operator that satisfies A2 = A = A∗. The
operator A is neither the zero or the identity operator. Specify σp(A), σc(A), and σr(A).

(b) (5p) Let H = L2([0,∞)), and let A ∈ B(H) be defined by [Au](x) = arctan(x)u(x). Specify
σp(A), σc(A), and σr(A).

Solution:

(a) A is a non-trivial orthogonal projection. As shown in the homework, this means that

σp(A) = {0, 1}, σc(A) = ∅, σr(A) = ∅.

(a) A is a multiplication operator so σ(A) equals the closure of the range of the function being multiplied.
In this case the spectrum is purely a continuum spectrum since there are no stationary points in the
range. So

σp(A) = ∅, σc(A) = [0, π/2], σr(A) = ∅.

Problem 4: (10p) Consider the four sequences in S∗(R) given below. Specify which sequences are
convergent. If the sequence is convergent, then specify the limit. No motivations required.

(a) (Tn)∞n=1 where Tn(x) = sin(nx).

(b) (Tn)∞n=1 where Tn(x) =

{
n when − 1/n ≤ x ≤ 1/n,
0 when |x| > 1/n.

(c) (Tn)∞n=1 where Tn(x) =

{
n2 when − 1/n ≤ x ≤ 1/n,
0 when |x| > 1/n.

(d) (Tn)∞n=1 where Tn(x) =
n∑

m=0

xm

m!
.

Solution:

(a) Tn → 0. We proved this in class.

(a) Tn → 2δ. We proved something very similar in class.

(c) Divergent. You can easily prove that lim
n→∞

Tn(ϕ) = lim
n→∞

2nϕ(0).

(d) Divergent. We have limn→∞ Tn(x) = ex, and ex is not a tempered distribution. (If you’d like to

prove things rigorously, consider ϕ(x) = exp
(
−(1 + x2)1/4

)
. Then ϕ ∈ S and Tn(ϕ)→∞.)



Problem 5: (20p) Let H denote the Hilbert space H = `2(Z). In other words, a doubly indexed vector

x = {x(n)}∞n=−∞ belongs to H iff

∞∑
n=−∞

|x(n)|2 <∞. Define A ∈ B(H) via:

[Ax](n) = x(n+ 1)− x(n− 1), n ∈ Z.
Let F : L2(T)→ H denote the standard Fourier transform, and let F−1 denote its inverse. Define

B = F−1AF

as an operator on L2(T).

(a) (5p) Determine the action of B on a function u = u(t) in L2(T).

(b) (15p) Determine σp(A), σc(A), and σr(A).

Solution:

(a) Consider a function u =
∑∞
−∞ anen, where en(x) = einx/

√
2π as usual. Then Fu = {an} and

AFu = {an+1 − an−1}. Then

[F−1AFu](x) =
∞∑

n=−∞

(
an+1 − an−1

) einx√
2π

=

∞∑
n=−∞

e−ix an+1
ei(n+1)x

√
2π

−
∞∑

n=−∞
eix an−1

ei(n−1)x√
2π

=
(
e−ix − eix

)
u(x) = −2i sin(x)u(x).

(b) Since A and B are unitarily equivalent, their spectra are identical. First note that

〈Bu, v〉 =

∫ π

−π
−2i sin(x)u(x) v(x) dx =

∫ π

−π
u(x) 2i sin(x) v(x) dx = 〈u, −Bv〉,

so B is skew-adjoint. This proves that σr(B) = ∅ and that σ(B) is a subset of the imaginary line.

Let us first search for eigenvalues. Suppose Bu = λu. Then

(−2i sin(x)− λ)u(x) = 0, a.e.

Since −2i sin(x)− λ = 0 except possibly for a set of measure zero, we find that σp(B) = ∅.

Set Ω = {ib : b ∈ [−2, 2]}. In other words, Ω is the range of the function f(x) = −2i sin(x), and our guess
at this point is that Ω is the continuum spectrum.

Suppose that λ /∈ Ω. Set d = inf{|λ − z| : z ∈ Ω} = dist(λ,Ω). Since Ω is closed we know that d > 0.
Then ∥∥(B − λI)−1u

∥∥2 =

∫ π

−π

∣∣∣∣ 1

f(x)− λ
u(x)

∣∣∣∣2 dx ≤ ∫ π

−π

1

d2
|u(x)|2 dx =

1

d2
‖u‖2

so ‖(B − λI)−1‖ ≤ 1/d <∞, which shows that λ ∈ ρ(B).

Suppose that λ = ib ∈ Ω for some b ∈ [−π, π]. Let a ∈ [−π, π] be such that f(a) = ib. Then pick
non-negative functions ϕn such that ‖ϕn‖ = 1, and ϕn(x) = 0 when |x− a| ≥ 1/n. Then

‖(B − λI)ϕn‖2 =

∫ π

−π
|(f(x)− ib)ϕn(x)|2 dx =

∫ a+1/n

a−1/n
|f(x)− ib|2 |ϕn(x)|2 dx ≤=

8

3n3
‖ϕn‖2 =

8

3n3
,

where we used that |f(x)− ib| = |
∫ x
a f
′(x)dx| ≤ 2|x− a| since |f ′| ≤ 2. The inequality proven shows that

B − λI is not coercive, and consequently cannot have closed range.

σp(A) = ∅, σc(A) = {ib : b ∈ [−2, 2]}, σr(A) = ∅.



Problem 6: (4 × 5p) For each of the four operators defined below, determine whether it is well-defined,
and whether it is continuous.

(a) A : S(R)→ C defined via A(ϕ) =

∫
R
x2 ϕ(x) dx.

(b) B : S(R)→ C defined via B(ϕ) =

∫
R
x
(
ϕ(x)

)2
dx.

(c) C : S(R)→ S(R) defined via [C(ϕ)](x) = xϕ(x).

(d) D : S∗(R)→ S∗(R) defined via DT = ∂T . (Just plain differentiation.)

Solution:

(a) Pick ϕ ∈ S. Then |A(ϕ)| ≤
∫

x2

(1 + x2)2
(1 + x2)2|ϕ(x)| dx ≤

∫
x2

(1 + x2)2
dx‖ϕ‖0,4 = C‖ϕ‖0,4.

This proves that A is well-defined. Next we prove continuity. Suppose that ϕn → ϕ in S. Then
|A(ϕ)−A(ϕn)| ≤ C‖ϕ− ϕn‖0,4 → 0.

(b) Pick ϕ ∈ S. Then |B(ϕ)| ≤
∫

|x|
(1 + x2)2

(
(1 + x2)ϕ(x)

)2
dx ≤

∫
|x|

(1 + x2)2
dx‖ϕ‖20,2 = C‖ϕ‖20,2. This

proves thatB is well-defined. Next we prove continuity. Suppose that ϕn → ϕ in S. SetM = supn ‖ϕn‖0,0.
Since (ϕn) is convergent to ϕ wrt the uniform norm, we know that M <∞ and that ‖ϕ‖0,0 ≤M . Then

|B(ϕ)−B(ϕn)| ≤
∫ ∞
−∞
|x| |(ϕ(x))2 − (ϕn(x))2| dx =

∫ ∞
−∞
|x| |(ϕ(x) + ϕn(x))(ϕ(x)− ϕn(x))| dx

≤
∫ ∞
−∞
|x| 2M |ϕ(x)− ϕn(x)| dx = 2M

∫ ∞
−∞

|x|
(1 + x2)2

(1 + x2)2|ϕ(x)− ϕn(x)| dx

≤ 2M

∫ ∞
−∞

|x|
(1 + x2)2

dx ‖ϕ− ϕn‖0,4 → 0.

(c) Fix ϕ ∈ S. Fix α, k ∈ Z+. Then

‖C(ϕ)‖α,k = sup
x

(1 + x2)k/2|∂α(xϕ)| = sup
x

(1 + x2)k/2|x∂αϕ+ α∂α−1ϕ| ≤M‖ϕ‖α,k+1 + α‖ϕ‖α−1,k,

where M is the finite number given by M = sup |x|(1+x2)k/2
(1+x2)(k+1)/2 . This inequality proves that C(ϕ) ∈ S. Next

consider continuity. Suppose that ϕn → ϕ in S. Then for any α, k ∈ Z+ we have

‖C(ϕ)− C(ϕn)‖α,k ≤ · · · ≤M‖ϕ− ϕn‖α,k+1 + α‖ϕ− ϕn‖α−1,k → 0.

(d) Fix T ∈ S∗. We will first prove that D(T ) is a distribution. Fix ϕ ∈ S. Then by definition

〈D(T ), ϕ〉 = −〈T, ϕ′〉.
We proved in class that ϕ′ ∈ S so D(T ) evaluates to a finite complex number. To establish that D(T )
is in S∗, we also need to prove that D(T ) is continuous. This follows from the fact that ϕn → ϕ in S
implies that ϕ′n → ϕ′ in S (also proven in class). So D(T ) is well-defined.

Is the map D : S∗(R)→ S∗(R) continuous? We need to prove that if Tn → T in S∗, then D(Tn)→ D(T )
in S∗. Suppose that Tn → T in S∗. Fix ϕ ∈ S. Then

〈D(Tn), ϕ〉 = −〈Tn, ϕ′〉 → {Since Tn → T and ϕ′ ∈ S} → −〈T, ϕ′〉 = 〈D(T ), ϕ〉.

In summary: All maps are well-defined and continuous.


