APPM5450 - Applied Analysis: Section exam 2
 1:00pm - 1:50pm, March 17, 2017.

Problem 1: (10p) Let H be a Hilbert space, and let $A \in \mathcal{B}(H)$.
(a) (5p) Define the spectrum $\sigma(A)$.
(b) (5p) Suppose that A is skew-adjoint and that $\|A\|=2$. Are there any complex numbers λ for which you can say for sure that $A-\lambda I$ is one-to-one and onto?

Solution:

(b) Since A is skew-adjoint, you know that if $\operatorname{Re}(\lambda) \neq 0$, then $\lambda \notin \sigma(A)$.

Since $\|A\|=2$, you know that if $|\lambda|>2$, then $\lambda \in \rho(A)$.
Consequently, $A-\lambda I$ is necessarily one-to-one and onto if either $|\lambda|>2$ or if $\operatorname{Re}(\lambda) \neq 0$.

Problem 2: (10p) Let $T \in \mathcal{S}^{*}(\mathbb{R})$ be defined via $T(\varphi)=\int_{-\infty}^{\infty} \log |x| \varphi(x) d x$. Specify the derivative of T. No motivation required.

Solution:

The derivative of T is the principal value of $1 / x$.
To prove this, note that

$$
\begin{aligned}
{[D T](\varphi)=} & -T\left(\varphi^{\prime}\right)=\lim _{\varepsilon \searrow 0}\left\{-\int_{-\infty}^{-\varepsilon} \log |x| \varphi^{\prime}(x) d x-\int_{\varepsilon}^{\infty} \log |x| \varphi^{\prime}(x) d x\right\} \\
= & \lim _{\varepsilon \searrow 0}\left\{-[\log |x| \varphi(x)]_{-\infty}^{-\varepsilon}+\int_{-\infty}^{-\varepsilon} \frac{1}{x} \varphi(x) d x-[\log |x| \varphi(x)]_{\varepsilon}^{\infty}+\int_{\varepsilon}^{\infty} \frac{1}{x} \varphi^{\prime}(x) d x\right\} \\
& =\lim _{\varepsilon \searrow 0}\left\{-\log (\varepsilon) \varphi(-\varepsilon)+\int_{-\infty}^{-\varepsilon} \frac{1}{x} \varphi(x) d x+\log (\varepsilon) \varphi(\varepsilon)+\int_{\varepsilon}^{\infty} \frac{1}{x} \varphi^{\prime}(x) d x\right\}=P V(1 / x)(\varphi),
\end{aligned}
$$

since $\lim _{\varepsilon \searrow 0} \log (\varepsilon)(\varphi(\varepsilon)-\varphi(-\varepsilon))=0$.

Problem 3: (10p) No motivations required for these two problems.
(a) (5p) Let H be a Hilbert space, and let $A \in \mathcal{B}(H)$ be an operator that satisfies $A^{2}=A=A^{*}$. The operator A is neither the zero or the identity operator. Specify $\sigma_{\mathrm{p}}(A), \sigma_{\mathrm{c}}(A)$, and $\sigma_{\mathrm{r}}(A)$.
(b) (5p) Let $H=L^{2}([0, \infty))$, and let $A \in \mathcal{B}(H)$ be defined by $[A u](x)=\arctan (x) u(x)$. Specify $\sigma_{\mathrm{p}}(A), \sigma_{\mathrm{c}}(A)$, and $\sigma_{\mathrm{r}}(A)$.

Solution:

(a) A is a non-trivial orthogonal projection. As shown in the homework, this means that

$$
\sigma_{\mathrm{p}}(A)=\{0,1\}, \quad \sigma_{\mathrm{c}}(A)=\emptyset, \quad \sigma_{\mathrm{r}}(A)=\emptyset
$$

(a) A is a multiplication operator so $\sigma(A)$ equals the closure of the range of the function being multiplied. In this case the spectrum is purely a continuum spectrum since there are no stationary points in the range. So

$$
\sigma_{\mathrm{p}}(A)=\emptyset, \quad \sigma_{\mathrm{c}}(A)=[0, \pi / 2], \quad \sigma_{\mathrm{r}}(A)=\emptyset .
$$

Problem 4: (10p) Consider the four sequences in $\mathcal{S}^{*}(\mathbb{R})$ given below. Specify which sequences are convergent. If the sequence is convergent, then specify the limit. No motivations required.
(a) $\left(T_{n}\right)_{n=1}^{\infty}$ where $T_{n}(x)=\sin (n x)$.
(b) $\left(T_{n}\right)_{n=1}^{\infty}$ where $T_{n}(x)= \begin{cases}n & \text { when }-1 / n \leq x \leq 1 / n, \\ 0 & \text { when }|x|>1 / n .\end{cases}$
(c) $\left(T_{n}\right)_{n=1}^{\infty}$ where $T_{n}(x)= \begin{cases}n^{2} & \text { when }-1 / n \leq x \leq 1 / n, \\ 0 & \text { when }|x|>1 / n .\end{cases}$
(d) $\left(T_{n}\right)_{n=1}^{\infty}$ where $T_{n}(x)=\sum_{m=0}^{n} \frac{x^{m}}{m!}$.

Solution:

(a) $T_{n} \rightarrow 0$. We proved this in class.
(a) $T_{n} \rightarrow 2 \delta$. We proved something very similar in class.
(c) Divergent. You can easily prove that $\lim _{n \rightarrow \infty} T_{n}(\varphi)=\lim _{n \rightarrow \infty} 2 n \varphi(0)$.
(d) Divergent. We have $\lim _{n \rightarrow \infty} T_{n}(x)=e^{x}$, and e^{x} is not a tempered distribution. (If you'd like to prove things rigorously, consider $\varphi(x)=\exp \left(-\left(1+x^{2}\right)^{1 / 4}\right)$. Then $\varphi \in \mathcal{S}$ and $T_{n}(\varphi) \rightarrow \infty$.)

Problem 5: (20p) Let H denote the Hilbert space $H=\ell^{2}(\mathbb{Z})$. In other words, a doubly indexed vector $x=\{x(n)\}_{n=-\infty}^{\infty}$ belongs to H iff $\sum_{n=-\infty}^{\infty}|x(n)|^{2}<\infty$. Define $A \in \mathcal{B}(H)$ via:

$$
[A x](n)=x(n+1)-x(n-1), \quad n \in \mathbb{Z}
$$

Let $F: L^{2}(\mathbb{T}) \rightarrow H$ denote the standard Fourier transform, and let F^{-1} denote its inverse. Define

$$
B=F^{-1} A F
$$

as an operator on $L^{2}(\mathbb{T})$.
(a) (5p) Determine the action of B on a function $u=u(t)$ in $L^{2}(\mathbb{T})$.
(b) $(15 \mathrm{p})$ Determine $\sigma_{\mathrm{p}}(A), \sigma_{\mathrm{c}}(A)$, and $\sigma_{\mathrm{r}}(A)$.

Solution:

(a) Consider a function $u=\sum_{-\infty}^{\infty} a_{n} e_{n}$, where $e_{n}(x)=e^{i n x} / \sqrt{2 \pi}$ as usual. Then $F u=\left\{a_{n}\right\}$ and $A F u=\left\{a_{n+1}-a_{n-1}\right\}$. Then

$$
\begin{array}{r}
{\left[F^{-1} A F u\right](x)=\sum_{n=-\infty}^{\infty}\left(a_{n+1}-a_{n-1}\right) \frac{e^{i n x}}{\sqrt{2 \pi}}=\sum_{n=-\infty}^{\infty} e^{-i x} a_{n+1} \frac{e^{i(n+1) x}}{\sqrt{2 \pi}}-\sum_{n=-\infty}^{\infty} e^{i x} a_{n-1} \frac{e^{i(n-1) x}}{\sqrt{2 \pi}}} \\
=\left(e^{-i x}-e^{i x}\right) u(x)=-2 i \sin (x) u(x)
\end{array}
$$

(b) Since A and B are unitarily equivalent, their spectra are identical. First note that

$$
\langle B u, v\rangle=\int_{-\pi}^{\pi} \overline{-2 i \sin (x) u(x)} v(x) d x=\int_{-\pi}^{\pi} \overline{u(x)} 2 i \sin (x) v(x) d x=\langle u,-B v\rangle
$$

so B is skew-adjoint. This proves that $\sigma_{\mathrm{r}}(B)=\emptyset$ and that $\sigma(B)$ is a subset of the imaginary line.
Let us first search for eigenvalues. Suppose $B u=\lambda u$. Then

$$
(-2 i \sin (x)-\lambda) u(x)=0, \quad \text { a.e. }
$$

Since $-2 i \sin (x)-\lambda=0$ except possibly for a set of measure zero, we find that $\sigma_{\mathrm{p}}(B)=\emptyset$.
Set $\Omega=\{i b: b \in[-2,2]\}$. In other words, Ω is the range of the function $f(x)=-2 i \sin (x)$, and our guess at this point is that Ω is the continuum spectrum.

Suppose that $\lambda \notin \Omega$. Set $d=\inf \{|\lambda-z|: z \in \Omega\}=\operatorname{dist}(\lambda, \Omega)$. Since Ω is closed we know that $d>0$. Then

$$
\left\|(B-\lambda I)^{-1} u\right\|^{2}=\int_{-\pi}^{\pi}\left|\frac{1}{f(x)-\lambda} u(x)\right|^{2} d x \leq \int_{-\pi}^{\pi} \frac{1}{d^{2}}|u(x)|^{2} d x=\frac{1}{d^{2}}\|u\|^{2}
$$

so $\left\|(B-\lambda I)^{-1}\right\| \leq 1 / d<\infty$, which shows that $\lambda \in \rho(B)$.
Suppose that $\lambda=i b \in \Omega$ for some $b \in[-\pi, \pi]$. Let $a \in[-\pi, \pi]$ be such that $f(a)=i b$. Then pick non-negative functions φ_{n} such that $\left\|\varphi_{n}\right\|=1$, and $\varphi_{n}(x)=0$ when $|x-a| \geq 1 / n$. Then

$$
\left\|(B-\lambda I) \varphi_{n}\right\|^{2}=\int_{-\pi}^{\pi}\left|(f(x)-i b) \varphi_{n}(x)\right|^{2} d x=\int_{a-1 / n}^{a+1 / n}|f(x)-i b|^{2}\left|\varphi_{n}(x)\right|^{2} d x \leq=\frac{8}{3 n^{3}}\left\|\varphi_{n}\right\|^{2}=\frac{8}{3 n^{3}}
$$

where we used that $|f(x)-i b|=\left|\int_{a}^{x} f^{\prime}(x) d x\right| \leq 2|x-a|$ since $\left|f^{\prime}\right| \leq 2$. The inequality proven shows that $B-\lambda I$ is not coercive, and consequently cannot have closed range.

$$
\sigma_{\mathrm{p}}(A)=\emptyset, \quad \sigma_{\mathrm{c}}(A)=\{i b: b \in[-2,2]\}, \quad \sigma_{\mathrm{r}}(A)=\emptyset
$$

Problem 6: $(4 \times 5$ p) For each of the four operators defined below, determine whether it is well-defined, and whether it is continuous.
(a) $A: \mathcal{S}(\mathbb{R}) \rightarrow \mathbb{C}$ defined via $A(\varphi)=\int_{\mathbb{R}} x^{2} \varphi(x) d x$.
(b) $B: \mathcal{S}(\mathbb{R}) \rightarrow \mathbb{C}$ defined via $B(\varphi)=\int_{\mathbb{R}} x(\varphi(x))^{2} d x$.
(c) $C: \mathcal{S}(\mathbb{R}) \rightarrow \mathcal{S}(\mathbb{R})$ defined via $[C(\varphi)](x)=x \varphi(x)$.
(d) $D: \mathcal{S}^{*}(\mathbb{R}) \rightarrow \mathcal{S}^{*}(\mathbb{R})$ defined via $D T=\partial T$. (Just plain differentiation.)

Solution:

(a) Pick $\varphi \in \mathcal{S}$. Then $|A(\varphi)| \leq \int \frac{x^{2}}{\left(1+x^{2}\right)^{2}}\left(1+x^{2}\right)^{2}|\varphi(x)| d x \leq \int \frac{x^{2}}{\left(1+x^{2}\right)^{2}} d x\|\varphi\|_{0,4}=C\|\varphi\|_{0,4}$. This proves that A is well-defined. Next we prove continuity. Suppose that $\varphi_{n} \rightarrow \varphi$ in \mathcal{S}. Then $\left|A(\varphi)-A\left(\varphi_{n}\right)\right| \leq C\left\|\varphi-\varphi_{n}\right\|_{0,4} \rightarrow 0$.
(b) Pick $\varphi \in \mathcal{S}$. Then $|B(\varphi)| \leq \int \frac{|x|}{\left(1+x^{2}\right)^{2}}\left(\left(1+x^{2}\right) \varphi(x)\right)^{2} d x \leq \int \frac{|x|}{\left(1+x^{2}\right)^{2}} d x\|\varphi\|_{0,2}^{2}=C\|\varphi\|_{0,2}^{2}$. This proves that B is well-defined. Next we prove continuity. Suppose that $\varphi_{n} \rightarrow \varphi$ in \mathcal{S}. Set $M=\sup _{n}\left\|\varphi_{n}\right\|_{0,0}$. Since $\left(\varphi_{n}\right)$ is convergent to φ wrt the uniform norm, we know that $M<\infty$ and that $\|\varphi\|_{0,0} \leq M$. Then

$$
\begin{aligned}
\left|B(\varphi)-B\left(\varphi_{n}\right)\right| & \leq \int_{-\infty}^{\infty}|x|\left|(\varphi(x))^{2}-\left(\varphi_{n}(x)\right)^{2}\right| d x=\int_{-\infty}^{\infty}|x|\left|\left(\varphi(x)+\varphi_{n}(x)\right)\left(\varphi(x)-\varphi_{n}(x)\right)\right| d x \\
& \leq \int_{-\infty}^{\infty}|x| 2 M\left|\varphi(x)-\varphi_{n}(x)\right| d x=2 M \int_{-\infty}^{\infty} \frac{|x|}{\left(1+x^{2}\right)^{2}}\left(1+x^{2}\right)^{2}\left|\varphi(x)-\varphi_{n}(x)\right| d x \\
& \leq 2 M \int_{-\infty}^{\infty} \frac{|x|}{\left(1+x^{2}\right)^{2}} d x\left\|\varphi-\varphi_{n}\right\|_{0,4} \rightarrow 0
\end{aligned}
$$

(c) Fix $\varphi \in \mathcal{S}$. Fix $\alpha, k \in \mathbb{Z}_{+}$. Then

$$
\|C(\varphi)\|_{\alpha, k}=\sup _{x}\left(1+x^{2}\right)^{k / 2}\left|\partial^{\alpha}(x \varphi)\right|=\sup _{x}\left(1+x^{2}\right)^{k / 2}\left|x \partial^{\alpha} \varphi+\alpha \partial^{\alpha-1} \varphi\right| \leq M\|\varphi\|_{\alpha, k+1}+\alpha\|\varphi\|_{\alpha-1, k},
$$

where M is the finite number given by $M=\sup \frac{|x|\left(1+x^{2}\right)^{k / 2}}{\left(1+x^{2}\right)^{(k+1) / 2}}$. This inequality proves that $C(\varphi) \in \mathcal{S}$. Next consider continuity. Suppose that $\varphi_{n} \rightarrow \varphi$ in \mathcal{S}. Then for any $\alpha, k \in \mathbb{Z}_{+}$we have

$$
\left\|C(\varphi)-C\left(\varphi_{n}\right)\right\|_{\alpha, k} \leq \cdots \leq M\left\|\varphi-\varphi_{n}\right\|_{\alpha, k+1}+\alpha\left\|\varphi-\varphi_{n}\right\|_{\alpha-1, k} \rightarrow 0
$$

(d) Fix $T \in \mathcal{S}^{*}$. We will first prove that $D(T)$ is a distribution. Fix $\varphi \in \mathcal{S}$. Then by definition

$$
\langle D(T), \varphi\rangle=-\left\langle T, \varphi^{\prime}\right\rangle
$$

We proved in class that $\varphi^{\prime} \in \mathcal{S}$ so $D(T)$ evaluates to a finite complex number. To establish that $D(T)$ is in \mathcal{S}^{*}, we also need to prove that $D(T)$ is continuous. This follows from the fact that $\varphi_{n} \rightarrow \varphi$ in \mathcal{S} implies that $\varphi_{n}^{\prime} \rightarrow \varphi^{\prime}$ in \mathcal{S} (also proven in class). So $D(T)$ is well-defined.

Is the map $D: \mathcal{S}^{*}(\mathbb{R}) \rightarrow \mathcal{S}^{*}(\mathbb{R})$ continuous? We need to prove that if $T_{n} \rightarrow T$ in \mathcal{S}^{*}, then $D\left(T_{n}\right) \rightarrow D(T)$ in \mathcal{S}^{*}. Suppose that $T_{n} \rightarrow T$ in \mathcal{S}^{*}. Fix $\varphi \in \mathcal{S}$. Then

$$
\left\langle D\left(T_{n}\right), \varphi\right\rangle=-\left\langle T_{n}, \varphi^{\prime}\right\rangle \rightarrow\left\{\text { Since } T_{n} \rightarrow T \text { and } \varphi^{\prime} \in \mathcal{S}\right\} \rightarrow-\left\langle T, \varphi^{\prime}\right\rangle=\langle D(T), \varphi\rangle
$$

In summary: All maps are well-defined and continuous.

