APPM5450 - Applied Analysis: Section exam 2

1:00pm - 1:50pm, March 17, 2017.
Hand in solutions to Problems 1 - 4 no later than 1:50pm. Closed books for this part.
Name: \qquad
Problem 1: (10p) Let H be a Hilbert space, and let $A \in \mathcal{B}(H)$.
(a) (5p) Define the spectrum $\sigma(A)$.
(b) (5p) Suppose that A is skew-adjoint and that $\|A\|=2$. Are there any complex numbers λ for which you can say for sure that $A-\lambda I$ is one-to-one and onto?

Problem 2: (10p) Let $T \in \mathcal{S}^{*}(\mathbb{R})$ be defined via $T(\varphi)=\int_{-\infty}^{\infty} \log |x| \varphi(x) d x$. Specify the derivative of T. No motivation required.

Problem 3: (10p) No motivations required for these two problems.
(a) (5p) Let H be a Hilbert space, and let $A \in \mathcal{B}(H)$ be an operator that satisfies $A^{2}=A=A^{*}$. The operator A is neither the zero or the identity operator. Specify $\sigma_{\mathrm{p}}(A), \sigma_{\mathrm{c}}(A)$, and $\sigma_{\mathrm{r}}(A)$.
(b) (5p) Let $H=L^{2}([0, \infty))$, and let $A \in \mathcal{B}(H)$ be defined by $[A u](x)=\arctan (x) u(x)$. Specify $\sigma_{\mathrm{p}}(A), \sigma_{\mathrm{c}}(A)$, and $\sigma_{\mathrm{r}}(A)$.

Problem 4: (10p) Consider the four sequences in $\mathcal{S}^{*}(\mathbb{R})$ given below. Specify which sequences are convergent. If the sequence is convergent, then specify the limit. No motivations required.
(a) $\left(T_{n}\right)_{n=1}^{\infty}$ where $T_{n}(x)=\sin (n x)$.
(b) $\left(T_{n}\right)_{n=1}^{\infty}$ where $T_{n}(x)= \begin{cases}n & \text { when }-1 / n \leq x \leq 1 / n, \\ 0 & \text { when }|x|>1 / n .\end{cases}$
(c) $\left(T_{n}\right)_{n=1}^{\infty}$ where $T_{n}(x)= \begin{cases}n^{2} & \text { when }-1 / n \leq x \leq 1 / n, \\ 0 & \text { when }|x|>1 / n .\end{cases}$
(d) $\left(T_{n}\right)_{n=1}^{\infty}$ where $T_{n}(x)=\sum_{m=0}^{n} \frac{x^{m}}{m!}$.
(Two points per problem for correctly identifying whether the sequence is convergent or not. An additional two points total if the limits are given correctly.)

Problem 5: (20p) Let H denote the Hilbert space $H=\ell^{2}(\mathbb{Z})$. In other words, a doubly indexed vector $x=\{x(n)\}_{n=-\infty}^{\infty}$ belongs to H iff $\sum_{n=-\infty}^{\infty}|x(n)|^{2}<\infty$. Define $A \in \mathcal{B}(H)$ via:

$$
[A x](n)=x(n+1)-x(n-1), \quad n \in \mathbb{Z}
$$

Let $F: L^{2}(\mathbb{T}) \rightarrow H$ denote the standard Fourier transform, and let F^{-1} denote its inverse. Define

$$
B=F^{-1} A F
$$

as an operator on $L^{2}(\mathbb{T})$.
(a) (5p) Determine the action of B on a function $u=u(t)$ in $L^{2}(\mathbb{T})$.
(b) (15p) Determine $\sigma_{\mathrm{p}}(A), \sigma_{\mathrm{c}}(A)$, and $\sigma_{\mathrm{r}}(A)$.

Please motivate your answers.

Problem 6: $(4 \times 5 \mathrm{p})$ For each of the four operators defined below, determine whether it is well-defined, and whether it is continuous.
(a) $A: \mathcal{S}(\mathbb{R}) \rightarrow \mathbb{C}$ defined via $A(\varphi)=\int_{\mathbb{R}} x^{2} \varphi(x) d x$.
(b) $B: \mathcal{S}(\mathbb{R}) \rightarrow \mathbb{C}$ defined via $B(\varphi)=\int_{\mathbb{R}} x(\varphi(x))^{2} d x$.
(c) $C: \mathcal{S}(\mathbb{R}) \rightarrow \mathcal{S}(\mathbb{R})$ defined via $[C(\varphi)](x)=x \varphi(x)$.
(d) $D: \mathcal{S}^{*}(\mathbb{R}) \rightarrow \mathcal{S}^{*}(\mathbb{R})$ defined via $D T=\partial T$. (Just differentiation in the plain distributional sense.)

Please briefly motivate your answer in each case.
Hints: By "well-defined," we mean that the expression can be evaluated and that the result belongs to the stated set. For instance, the operator A is well-defined if the integral evaluates to a finite complex number for every $\varphi \in \mathcal{S}(\mathbb{R})$. Also, observe that you do not need to state whether the operator given is linear or not.

