
APPM5450 — Applied Analysis: Section exam 1 — Solutions
8:30am – 9:50am, February 17, 2017. Closed books.

Name:

Problem 1: (20p) Let H = L2(T), and let (un)∞n=1 be a sequence in H. In the chart below, we provide
on each row some information about this sequence. Mark the statements that are true with a “T.”

Note: The rows are independent — they do not refer to the same sequence!

Necessarily
converges
weakly.

Necessarily
has a weakly
convergent
subsequence.

Necessarily
converges in
norm.

Necessarily
has a norm
convergent
subsequence.

(un)∞n=1 is an orthonormal sequence.
T T

(un)∞n=1 is a bounded sequence.
T

(un)∞n=1 ⊆ K where K is pre-compact in
the norm topology.

T T

un(x) = sin(nx).
T T

un(x) = n sin(nx).

Comments:

Two points were deducted for each incorrect answer.

(a) This is our standard example of a sequence that is weakly convergent, but not norm convergent.

(b) This follows from Banach-Alaoglu.

(c) It is a standard fact about compact sets that any sequence has a convergent subsequence. Then just
use that if the subsequence is norm convergent, it is of course also weakly convergent.

(d) This is an orthogonal and bounded sequence, so it converges weakly. To prove that it does not
converge in norm, use that ‖un − um‖2 = ‖un‖2 + ‖um‖2 = π + π since 〈un, um〉 = 0 when m 6= n.

(e) We have ‖un‖2 = n2π so the sequence is unbounded. This means that it does not converge weakly,
and cannot have a weakly convergent subsequence.



Problem 2: (20p) Let H = L2(T), and suppose that for u ∈ H, you know that

〈en, u〉 = −i sign(n)

√
π

2

1

n2
, for n 6= 0,

where en(t) = eint/
√

2π are the elements of the standard Fourier basis. You also know that 〈e0, u〉 = 0.
No motivation is required in the following:

(a) (10p) Specify for which m ≥ 0 it is the case that u ∈ Cm(T).

(b) (10p) Specify for which k ≥ 0 it is the case that u ∈ Hk(T).

Hint: You may use that

N∑
n=−N

αn
eint√

2π
=

N∑
n=1

1

n2
sin(nt).

Solution:

It is best to do (b) first and then (a).

(b) Set αn = 〈en, u〉, and let us evaluate the Sobolev norm

‖u‖2Hk =
∑
n∈Z

(1 + n2)k|αn|2 =
∑
n6=0

(1 + n2)k
π

2n4
∼
∞∑
n=1

n2k−4.

The sum is finite iff 2k − 4 < −1, which is to say: For k ∈ [0, 3/2)

(a) We proved in (b) that u ∈ Hk for some k > 1/2, so the Sobolev embedding theorem states that u is
indeed continuous.

To check if u ∈ C1, the Sobolev embedding theorem is not helpful. It indicates that u should just barely
not be in C1, but the version of the theorem that we covered does not assert this positively. However,
using the hint, we can check directly. With uN =

∑N
n=−N αnen, we find using the hint that

u′N (t) =
N∑

n=1

1

n
cos(nt).

For t = 0, we find that u′N (0) =
∑N

n=1 1/n ∼ log(N)→∞ as N →∞. This gives: Only for m = 0.
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Problem 3: (20p) Let H be a Hilbert space and let P ∈ B(H).

(a) (5p) Specify what P must satisfy to be a projection.

(b) (15p) Prove that if P is a projection and ran(P ) 6= ker(P )⊥, then ‖P‖ > 1.

Solution:

(a) P 2 = P .

(b) Suppose that ran(P ) 6= ker(P )⊥. Then there are x ∈ ran(P ) and y ∈ ker(P ) such that 〈x, y〉 6= 0. Set

α = 〈x, y〉/|〈x, y〉| and z = αy. Then z ∈ ker(P ) and 〈x, z〉 = |〈x, y〉| ∈ R+. Set

w = x− z t.
Then ‖Pw‖ = ‖x‖, and

‖w‖2 = ‖x‖2 − 2 t 〈x, z〉+ t2 ‖z‖2.
Set t = 〈x, z〉/‖z‖2, to get ‖w‖ = ‖x‖2 − (〈x, z〉)2

‖z‖2 < ‖x‖2, which shows that ‖P‖ > 1.



Problem 4: (20p) Let H be a Hilbert space, let {en}∞n=1 be an orthonormal sequence in H, and let
{λn}∞n=1 be a bounded sequence of complex numbers. Define A ∈ B(H) via

Au =
∞∑
n=1

λn 〈en, u〉 en.

(a) (10p) Prove that ‖A‖ = sup
n∈N
|λn|.

(b) (10p) Which of the following statements are necessarily true:
(i) If every λn is real, then A is self-adjoint.
(ii) If |λn| = 1 for every n, then A is unitary.

(iii) Any operator A of this type is normal.
(iv) If λn ∈ {0, 1} for every n, then A is a projection.

Solution:

(a) Set M = supn |λn|. First we prove that ‖A‖ ≤M . For any u ∈ H, we have

‖Au‖2 = {Parseval} =

∞∑
n=1

|λn 〈en, u〉|2 ≤
∞∑
n=1

M2 |〈en, u〉|2 ≤M2‖u‖2.

Next we prove that ‖A‖ ≥M . For any n, we have that

‖A‖ = sup
‖u‖=1

‖Au‖ ≥ ‖Aen‖ = ‖λnen‖ = |λn|.

Take the supremum over n to get ‖A‖ ≥ supn |λn| = M .

(b) Let us discuss each question in turn:

(i) TRUE. It is easy to verify that

A∗u =

∞∑
n=1

λn 〈en, u〉 en.

We see that if every λn is real, then A = A∗.

(ii) FALSE. The statement is true if {en} is an ON-basis. If it is not, then to prove that the claim is false,
pick a vector x 6= 0 such that 〈en, x〉 = 0 for every n. Then ‖Ax‖ = 0 < ‖x‖.

(iii) TRUE. It is easily verified that

AA∗x =
∞∑
n=1

λn λn 〈en, u〉 en =
∞∑
n=1

λn λn 〈en, u〉 en = A∗Ax.

(iv) TRUE. We find that

A2x =

∞∑
n=1

λ2n 〈en, u〉 en.

If every λn ∈ {0, 1}, then λ2n = λn so A2 = A. (The converse is also true, if any λn is not equal to zero
or one, then A2 6= A.)


