APPM5450 — Applied Analysis: Section exam 1

8:30am – 9:50am, February 17, 2017. Closed books.

Name:

Problem 1: (20p) Let $H = L^2(\mathbb{T})$, and let $(u_n)_{n=1}^{\infty}$ be a sequence in H. In the chart below, we provide on each row some information about this sequence. Mark the statements that are true with a "T."

Note: The rows are independent — they do not refer to the same sequence!

	Necessarily	Necessarily	Necessarily	Necessarily
	converges	has a weakly	converges in	has a norm
	weakly.	convergent	norm.	convergent
		subsequence.		subsequence.
$(u_n)_{n=1}^{\infty}$ is an orthonormal sequence.				
$(u_n)_{n=1}^{\infty}$ is a bounded sequence.				
$(u_n)_{n=1}^{\infty} \subseteq K$ where K is pre-compact in				
the norm topology.				
$u_n(x) = \sin(nx).$				
$u_n(x) = n \sin(nx).$				

Problem 2: (20p) Let $H = L^2(\mathbb{T})$, and suppose that for $u \in H$, you know that

$$\langle e_n, u \rangle = -i \operatorname{sign}(n) \sqrt{\frac{\pi}{2}} \frac{1}{n^2}, \quad \text{for } n \neq 0$$

where $e_n(t) = e^{int}/\sqrt{2\pi}$ are the elements of the standard Fourier basis. You also know that $\langle e_0, u \rangle = 0$. No motivation is required in the following:

- (a) (10p) Specify for which $m \ge 0$ it is the case that $u \in C^m(\mathbb{T})$. Answer:
- (b) (10p) Specify for which $k \ge 0$ it is the case that $u \in H^k(\mathbb{T})$. Answer:

Hint: You may use that
$$\sum_{n=-N}^{N} \alpha_n \frac{e^{int}}{\sqrt{2\pi}} = \sum_{n=1}^{N} \frac{1}{n^2} \sin(nt).$$

Problem 3: (20p) Let H be a Hilbert space and let $P \in \mathcal{B}(H)$.

- (a) (5p) Specify what P must satisfy to be a projection.
- (b) (15p) Prove that if P is a projection and $\operatorname{ran}(P) \neq \ker(P)^{\perp}$, then ||P|| > 1.

Problem 4: (20p) Let H be a Hilbert space, let $\{e_n\}_{n=1}^{\infty}$ be an orthonormal sequence in H, and let $\{\lambda_n\}_{n=1}^{\infty}$ be a bounded sequence of complex numbers. Define $A \in \mathcal{B}(H)$ via

$$Au = \sum_{n=1}^{\infty} \lambda_n \langle e_n, u \rangle e_n.$$

- (a) (10p) Prove that $||A|| = \sup_{n \in \mathbb{N}} |\lambda_n|$.
- (b) (10p) Which of the following statements are necessarily true:
 - (i) If every λ_n is real, then A is self-adjoint.
 - (ii) If $|\lambda_n| = 1$ for every *n*, then *A* is unitary.
 - (iii) Any operator A of this type is normal.
 - (iv) If $\lambda_n \in \{0, 1\}$ for every *n*, then *A* is a projection.