Let *H* be a Hilbert space, and let (x_n) be a sequence in *H*.

Definition: $x_n \rightarrow x$ means that for every $y \in H$ we have $\lim_{n \to \infty} \langle y, x_n \rangle = \langle y, x \rangle$.

- 1. If $x_n \rightharpoonup x$, then $\sup_n ||x_n|| < \infty$.
- **2.** If $x_n \rightarrow x$, then $||x|| \leq \liminf_{n \rightarrow \infty} ||x_n||$.
- **3.** If $x_n \rightarrow x$ and $||x_n|| \rightarrow ||x||$, then $x_n \rightarrow x$.
- 4. Let $(e_n)_{n=1}^{\infty}$ be an orthonormal sequence. Then $e_n \rightarrow 0$.
- 5. Let (x_n) be a bounded sequence in H, and let Ω be a dense subset of H. If $\lim_{n \to \infty} \langle y, x_n \rangle = \langle y, x \rangle$ for every $y \in \Omega$, then $x_n \rightharpoonup x$.
- 6. Let (x_n) be a bounded sequence in H, and let $\{e_\alpha\}_{\alpha \in A}$ be an ON-basis for H. If $\lim_{n \to \infty} \langle e_\alpha, x_n \rangle = \langle e_\alpha, x \rangle$ for every $\alpha \in A$, then $x_n \to x$.
- 7. The unit ball in H is compact with respect to the weak topology.
- 8. Any bounded sequence in *H* has a weakly convergent subsequence.

Note: We already covered many of these facts in the Banach space chapter!