Homework set 14 - APPM5450, Spring 2017 - Solutions

Problem 12.8: We want to prove that

$$
\left\|f-f_{n}\right\|_{p}^{p}=\int\left|f-f_{n}\right|^{p} \rightarrow \infty
$$

We know that $\left|f-f_{n}\right|^{p} \rightarrow 0$ pointwise, so if we can only justify moving the limit inside the integral, we'll be done.

First note that

$$
|f(x)|=\lim _{n \rightarrow \infty}\left|f_{n}(x)\right| \leq|g(x)| .
$$

Then we can dominate the integrand as follows:

$$
\left|f-f_{n}\right|^{p} \leq\left(|f|+\left|f_{n}\right|\right)^{p} \leq(|g|+|g|)^{p} \leq 2^{p}|g|^{p} .
$$

Since $\int|g|^{p}<\infty$, we find that the Lebesque dominated convergence theorem applies, and so

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{p}^{p}=\lim _{n \rightarrow \infty} \int\left|f-f_{n}\right|^{p}=\{\mathrm{LDCT}\}=\int\left(\lim _{n \rightarrow \infty}\left|f-f_{n}\right|^{p}\right)=\int 0=0
$$

Problem 12.16: Fix $f \in L^{p}$ and $\varepsilon>0$. We want to prove that there exists a $\delta>0$ such that for $|h|<\delta$, we have $\left\|f-\tau_{h} f\right\|_{p}<\varepsilon$.

First pick $\varphi \in C_{\mathrm{c}}$ such that $\|f-\varphi\|_{p}<\varepsilon / 3$. Then

$$
\begin{aligned}
&\left\|f-\tau_{h} f\right\|_{p} \leq\|f-\varphi\|_{p}+\left\|\varphi-\tau_{h} \varphi\right\|_{p}+\left\|\tau_{h} \varphi-\tau_{h} f\right\|_{p} \\
&=\|f-\varphi\|_{p}+\left\|\varphi-\tau_{h} \varphi\right\|_{p}+\|\varphi-f\|_{p}<\varepsilon / 3+\left\|\varphi-\tau_{h} \varphi\right\|_{p}+\varepsilon / 3
\end{aligned}
$$

Set $R=\sup \{|x|: \varphi(x) \neq 0\}$. Since φ is uniformly continuous, there exists a δ such that if $|x-y|<\delta$, then $|\varphi(x)-\varphi(y)|<\varepsilon /\left(3 \mu\left(B_{R+1}(0)\right)^{1 / p}\right)$. Then, if $h<\min (\delta, 1)$,

$$
\left\|\varphi-\tau_{h} \varphi\right\|_{p}^{p}=\int_{B_{R+1}(0)}|\varphi(x)-\varphi(x-h)|^{p} d x<\int_{B_{R+1}(0)} \frac{\varepsilon^{p}}{3^{p} \mu\left(B_{R+1}(0)\right)} d x<\frac{\varepsilon^{p}}{3^{p}} .
$$

Problem 12.17: For $n=1,2,3, \ldots$, set $I_{n}=\left(2^{-n}, 2^{-n+1}\right)$, and $f_{n}=2^{n / p} \chi_{I_{n}}$. Then $\left\|f_{n}\right\|_{p}=1$ for all n. Suppose $m \neq n$, then

$$
\left\|f_{n}-f_{m}\right\|_{\infty}=1
$$

and for $p \in[1, \infty)$ we have

$$
\left\|f_{n}-f_{m}\right\|_{p}=\left(\int_{0}^{1}\left(2^{n} \chi_{I_{n}}+2^{m} \chi_{I_{m}}\right)\right)^{1 / p}=2^{1 / p}
$$

No subsequence of $\left(f_{n}\right)_{n=1}^{\infty}$ can be Cauchy, and therefore no subsequence can converge.
Problem 12.18: For $n=1,2,3, \ldots$, set $I_{n}=\left(2^{-n}, 2^{-n+1}\right)$, and $f_{n}=2^{n} \chi_{I_{n}}$. Let $\left(f_{n_{j}}\right)_{j=1}^{\infty}$ be a subsequence of $\left(f_{n}\right)_{n=1}^{\infty}$. Define $g \in L^{\infty}$ by

$$
g=\sum_{j=1}^{\infty}(-1)^{j} \chi_{I_{n_{j}}},
$$

and define $\varphi \in\left(L^{1}\right)^{*}$ via $\varphi(f)=\int f g$. Then $\varphi\left(f_{n_{j}}\right)=(-1)^{j}$ (verify!) and so $\left(f_{n_{j}}\right)$ cannot converge weakly. Since L^{1} is not reflexive, this does not contradict that Banach-Alaoglu theorem.

Problem 12.13: Set $I=[0,1]$ and let Ω be a dense set in $L^{\infty}(I)$. For $r \in I$, set $f_{r}=\chi_{[0, r]}$, and pick $x_{r} \in \Omega \cap B_{1 / 3}\left(f_{r}\right)$. Since $\left\|f_{r}-f_{s}\right\|=1$ if $s \neq r$, we find that $\left\|x_{r}-x_{s}\right\| \geq\left\|f_{r}-f_{s}\right\|-\| f_{r}-$ $x_{r}\|-\| f_{s}-x_{s} \| \geq 1 / 3$, so all the x_{r} 's are distinct. Therefore, Ω must be uncountable, and L^{∞} cannot be seperable.

To prove that $C(I)$ cannot be dense in $L^{\infty}(I)$, simply note that if $f=\chi_{[0,1 / 2]}$, and $\varphi \in C(I)$, then

$$
\|f-\varphi\|_{\infty} \geq \max (|\varphi(1 / 2)|,|1-\varphi(1 / 2)|) \geq 1 / 2
$$

(verify this!).

An alternative argument for why $C(I)$ cannot be dense in $L^{\infty}(I)$: If $\varphi_{n} \in C(I)$, and $\varphi_{n} \rightarrow f$ in the supnorm, then $\left(\varphi_{n}\right)$ is a Cauchy sequence with respect to the uniform norm (when applied to continuous functions, the uniform norm and the L^{∞} norms are identical). Therefore, there exists a continuous function φ such that $\varphi_{n} \rightarrow \varphi$ uniformly. Then $f(x)=\varphi(x)$ almost everywhere. But not every equivalence class function in L^{∞} has a continuous function in it (for instance $f=\chi_{[0,1 / 2]}$).

Problem 12.14: Let p and q be such that $1 \leq p<q \leq \infty$.

First we construct a function $f \in L^{p} \backslash L^{q}$. Let α be a non-negative number and set $f(x)=x^{-\alpha} \chi_{[0,1]}$. Then

$$
\|f\|_{p}^{p}=\int_{0}^{1} x^{-\alpha p} d x
$$

which is finite if $\alpha p<1$. Moreover

$$
\|f\|_{q}^{q}=\int_{0}^{1} x^{-\alpha q} d x
$$

which is infinite if $\alpha q>1$. Consequently, $f \in L^{p} \backslash L^{q}$ if

$$
\frac{1}{q}<\alpha<\frac{1}{p}
$$

To construct a function $f \in L^{q} \backslash L^{p}$, set $f=x^{-\alpha} \chi_{[1, \infty)}$. Then

$$
\|f\|_{p}^{p}=\int_{1}^{\infty} x^{-\alpha p} d x
$$

which is infinite if $\alpha p<1$. Moreover

$$
\|f\|_{q}^{q}=\int_{1}^{\infty} x^{-\alpha q} d x
$$

which is finite if $\alpha q>1$. Thus, $f \in L^{1} \backslash L^{p}$ if

$$
\frac{1}{q}<\alpha<\frac{1}{p}
$$

(The arguments above need slight modifications if $q=\infty$, but the idea is the same.)

Consider the function

$$
f(x)=\frac{1}{\left(|x|\left(1+\log ^{2}|x|\right)\right)^{1 / 2}}
$$

That $f \in L^{2}$ is clear, since

$$
\begin{aligned}
& \|f\|_{2}^{2}=\int_{-\infty}^{\infty} \frac{1}{|x|\left(1+\log ^{2}|x|\right)} d x=2 \int_{0}^{\infty} \frac{1}{x\left(1+\log ^{2} x\right)} d x=\left\{x=e^{t}\right\} \\
& \quad 2 \int_{-\infty}^{\infty} \frac{1}{e^{t}\left(1+t^{2}\right)} e^{t} d t=2 \pi
\end{aligned}
$$

Moreover, if $p>2$, then note that there exists a $\delta>0$ such that

$$
x^{(p-2) / 2}\left(1+\log ^{2} x\right)^{p / 2} \leq 1
$$

when $x \in(0, \delta)$. Then

$$
\|f\|_{p}^{p} \geq \int_{0}^{\delta} \frac{1}{x^{p / 2}\left(1+\log ^{2} x\right)^{p / 2}} d x=\int_{0}^{\delta} \frac{1}{x} \underbrace{\frac{1}{x^{(p-2) / 2}\left(1+\log ^{2} x\right)^{p / 2}}}_{\geq 1} d x=\infty
$$

Analogously, if $p<2$, then there exists an M such that

$$
x^{(p-2) / 2}\left(1+\log ^{2} x\right)^{p / 2} \leq 1
$$

when $x \geq M$. Then

$$
\|f\|_{p}^{p} \geq \int_{M}^{\infty} \frac{1}{x^{p / 2}\left(1+\log ^{2} x\right)^{p / 2}} d x=\int_{M}^{\infty} \frac{1}{x} \underbrace{\frac{1}{x^{(p-2) / 2}\left(1+\log ^{2} x\right)^{p / 2}}}_{\geq 1} d x=\infty
$$

Problem 12.15: Let $\alpha \in(0,1)$, and let $m, n \in(1, \infty)$ be such that $1 / m+1 / n=1$ (we will determine suitable values for α, m, n later). Then from Hölder's inequality we obtain

$$
\begin{equation*}
\|\left. f\right|_{r} ^{r}=\int|f|^{r}=\int|f|^{\alpha r}|f|^{(1-\alpha) r} \leq\left(\int|f|^{\alpha m r}\right)^{1 / m}\left(\int|r|^{(1-\alpha) n r}\right)^{1 / n} \tag{1}
\end{equation*}
$$

In order to obtain the desired right hand side, we must pick α, m, n so that

$$
\begin{aligned}
\alpha m r & =p, \\
(1-\alpha) n r & =q, \\
(1 / m)+(1 / n) & =1 .
\end{aligned}
$$

To obtain an equation for α, we eliminate m and n :

$$
\frac{(1-\alpha) r}{q}=\frac{1}{n}=1-\frac{1}{m}=1-\frac{\alpha r}{p} .
$$

Solving for α we obtain

$$
\alpha=\frac{p q-p r}{r q-r p}=\frac{1 / r-1 / q}{1 / p-1 / q} .
$$

Equation (1) now takes the form

$$
\|f\|_{r} \leq\left(\left(\|f\|_{p}^{p}\right)^{1 / m}\left(\|f\|_{q}^{q}\right)^{1 / n}\right)^{1 / r}=\|f\|_{p}^{p / m r}\|f\|_{q}^{q / n r}
$$

Finally note that

$$
\begin{aligned}
\frac{p}{m r} & =\alpha=\frac{1 / r-1 / q}{1 / p-1 / q} \\
\frac{q}{n r} & =1-\alpha=1-\frac{1 / r-1 / q}{1 / p-1 / q}=\frac{1 / p-1 / r}{1 / p-1 / q}
\end{aligned}
$$

Problem 1: Let λ be a real number such that $\lambda \in(0,1)$, and let a and b be two non-negative real numbers. Prove that

$$
\begin{equation*}
a^{\lambda} b^{1-\lambda} \leq \lambda a+(1-\lambda) b \tag{2}
\end{equation*}
$$

with equality iff $a=b$.
Solution: For $b=0$ equation (2) reduces to $0 \leq \lambda a$ which is clearly true.
When $b \neq 0$ we divide (2) by b and set $t=a / b$ to obtain

$$
t^{\lambda} \leq \lambda t+1-\lambda
$$

Set

$$
f(t)=\lambda t+1-\lambda-t^{\lambda}
$$

We need to prove that $f(t) \geq 0$ when $t \geq 0$. First note that $f(0)=1-\lambda>0$ and that $\lim _{t \rightarrow \infty} f(t)=\infty$. Since f is differentiable, we therefore need only investigate the points where $f^{\prime}(t)=0$. We find

$$
f^{\prime}(t)=\lambda-\lambda t^{\lambda-1}
$$

so $f^{\prime}(t)=0$ happens only when $t=1$. Now $f(1)=0$ so it follows that $f(t) \geq 0$ for all $t \geq 0$, and that $f(t)=0$ iff $t=1$ (which is to say $a=b$).

Problem 2: [Hölder's inequality] Suppose that p is a real number such that $1<p<\infty$, and let q be such that $p^{-1}+q^{-1}=1$. Let (X, μ) be a measure space, and suppose that $f \in L^{P}(X, \mu)$ and $g \in L^{q}(X, \mu)$. Prove that $f g \in L^{1}(X, \mu)$, and that

$$
\begin{equation*}
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q} . \tag{3}
\end{equation*}
$$

Prove that equality holds iff $\alpha|f|^{p}=\beta|g|^{q}$ for some α, β such that $\alpha \beta \neq 1$.
Solution: Suppose $\|f\|_{p}=0$, then $f=0$ a.e. and so (3) holds since both sides are identically zero. Analogously, (3) holds when $\|g\|_{q}=0$.

Now suppose $\|f\|_{p} \neq 0$ and $\|g\|_{q} \neq 0$. Set

$$
a=\left|\frac{f(x)}{\|f\|_{p}}\right|^{p}, \quad b=\left|\frac{g(x)}{\|g\|_{q}}\right|^{q}, \quad \lambda=\frac{1}{p} .
$$

Then invoke (2), observing that $q(1-\lambda)=q(1-1 / p)=q(1 / q)=1$, to obtain

$$
\frac{|f(x)|}{\|f\|_{p}} \frac{|g(x)|}{\|g\|_{q}} \leq \frac{1}{p} \frac{|f(x)|^{p}}{\|f\|_{p}^{p}}+\left(1-\frac{1}{p}\right) \frac{|g(x)|^{q}}{\|g\|_{q}^{q}}
$$

Integrate over X to obtain

$$
\frac{1}{\|f\|_{p}\|g\|_{q}} \int_{X}|f(x)||g(x)| d \mu(x) \leq \underbrace{\frac{1}{p} \frac{\|f\|_{p}^{p}}{\|f\|_{p}^{p}}+\left(1-\frac{1}{p}\right) \frac{\|g\|_{q}^{q}}{\|g\|_{q}^{q}}}_{=1} .
$$

Multiply by $\|f\|_{p}\|g\|_{q}$ to obtain (3).

Problem 3: [Minkowski's inequality] Let (X, μ) be a measure space, and let p be a real number such that $1 \leq p \leq \infty$. Prove that for $f, g \in L^{p}(X, \mu)$,

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

Solution:

Suppose $p=1$:

$$
\|f+g\|_{1}=\int|f(x)+g(x)| \leq \int(|f(x)|+|g(x)|)=\int|f(x)|+\int|g(x)|=\|f\|_{1}+\|g\|_{1} .
$$

Suppose $p=\infty$:

$$
\begin{aligned}
&\|f+g\|_{\infty}=\operatorname{ess} \sup |f(x)+g(x)| \leq \operatorname{ess} \sup (|f(x)|+|g(x)|) \\
& \quad \leq \operatorname{ess} \sup |f(x)|+\operatorname{ess} \sup |g(x)|=\|f\|_{\infty}+\|g\|_{\infty} .
\end{aligned}
$$

Suppose $p \in(1, \infty)$: The triangle inequality yields

$$
|f(x)+g(x)|^{p}=|f(x)+g(x)||f(x)+g(x)|^{p-1} \leq(|f(x)|+|g(x)|)|f(x)+g(x)|^{p-1} .
$$

Integrate both sides:

$$
\|f+g\|_{p}^{p} \leq \int|f(x)||f(x)+g(x)|^{p-1}+\int|g(x)||f(x)+g(x)|^{p-1}
$$

Now apply Hölder:
$\|f+g\|_{p}^{p} \leq\|f\|_{p}\left\||f+g|^{p-1}\right\|_{q}+\|g\|_{p}\left\||f+g|^{p-1}\right\|_{q}=\left(\|f\|_{p}+\|g\|_{p}\right)\left(\int|f(x)+g(x)|^{q(p-1)}\right)^{1 / q}$.
Now use that $q=1 /(1-1 / p)=p /(p-1)$ to see that $q(p-1)=p$ to get

$$
\|f+g\|_{p}^{p} \leq\left(\|f\|_{p}+\|g\|_{p}\right)\left(\int|f(x)+g(x)|^{p}\right)^{1 / q}=\left(\|f\|_{p}+\|g\|_{p}\right)\|f+g\|_{p}^{p / q}
$$

Observe that $p / q=p(1-1 / p)=p-1$ to obtain

$$
\|f+g\|_{p}^{p} \leq\left(\|f\|_{p}+\|g\|_{p}\right)\|f+g\|_{p}^{p-1}
$$

which gives Minkowski upon division by $\|f+g\|_{p}^{p-1}$.

