Homework set 8 — APPM5450, Spring 2017

From the textbook: 11.1(b,c), 11.2, 11.6, 11.7 (important!), 11.8, 11.10.

Problem 1: Define a function f on \mathbb{R} via f(x) = |x|. Compute carefully the first and the second derivatives of f where the differentiation is understood in a distributional sense. (We did this in class, but please try to redo it without looking at your notes.)

Problem 2: Prove that if $f \in C^{\infty}(\mathbb{R}^d)$, and for every $\alpha \in \mathbb{Z}^d$, there exist finite C and N such that $|\partial^{\alpha} f(x)| \leq C(1+|x|^N)$, then $f\varphi \in S$ whenever $\varphi \in S$. Moreover, prove that if $\varphi_n \to \varphi$ in S, then $f\varphi_n \to f\varphi$ in S.

Problem 3: Demonstrate that a tempered function is not necessarily of at most polynomial growth by constructing a continuous function f on \mathbb{R} such that

(1)
$$\int_{-\infty}^{\infty} |f(x)| \, dx < \infty$$

but

(2)
$$\sup_{x \in \mathbb{R}} \frac{|f(x)|}{(1+|x|^2)^{k/2}} = \infty, \quad \forall k \in \{0, 1, 2, \dots\}.$$

If you would like to make the problem slightly harder, then construct a function f that satisfies (2) and also

(3)
$$\int_{-\infty}^{\infty} (1+|x|^2)^{k/2} |f(x)| \, dx < \infty, \qquad \forall \ k \in \{0, \ 1, \ 2, \ \dots \}.$$

Problem 4 (optional): Let \mathcal{D} denote the linear space $C_c^{\infty}(\mathbb{R}^d)$. We define a topology on \mathcal{D} by saying that $\varphi_n \to \varphi$ if and only if there exists a compact set $K \subseteq \mathbb{R}^d$ such that $\operatorname{supp}(\varphi_n) \subseteq K$ for all n, and $||\partial^{\alpha}\varphi_n - \partial^{\alpha}\varphi||_{u} \to 0$ for all $\alpha \in \mathbb{Z}_{+}^d$.

(a) Prove that \mathcal{D} is a linear subspace of \mathcal{S} .

(b) Prove that the set \mathcal{D} is not closed in the topology of \mathcal{S} .

(c) Prove that if $\varphi_n \to \varphi$ in \mathcal{D} , then $\varphi_n \to \varphi$ in \mathcal{S} .