Homework set 7 - APPM5450, Spring 2017 - partial solutions

Problem 9.21: Suppose $A \in \mathcal{B}(H)$ is such that

$$
\operatorname{Re}(x, A x) \leq 2 \alpha\|x\|^{2} .
$$

Prove that the solution $x=x(t)$ of $x^{\prime}(t)=A x(t)$ satisfies

$$
\|x(t)\| \leq e^{\alpha t}\|x(0)\|
$$

Note: The book may have a typo - the bound seems off by a factor of two. Consider for instance $A x=2 \alpha x$, then $x(t)=e^{2 \alpha t} x(0)$.
Solution: Set $f(t)=\|x(t)\|^{2}$. Then

$$
f^{\prime}(t)=\frac{d}{d t}(x, x)=\left(x^{\prime}, x\right)+\left(x, x^{\prime}\right)=(A x, x)+(x, A x)=2 \operatorname{Re}(x, A x) \leq 4 \alpha\|x(t)\|^{2}=4 \alpha f(t)
$$

By the Grönwall inequality, we find

$$
\|x(t)\|^{2}=f(t) \leq f(0) \exp \left(\int_{0}^{t} 4 \alpha d s\right)=f(0) e^{4 \alpha t}=\|x(0)\|^{2} e^{4 \alpha t}
$$

Extract the square root to obtain the desired bound.
Problem 9.22: Let A be compact and non-negative. Prove that there exists a unique compact non-negative operator B such that $B^{2}=A$.

Solution: Since A is self-adjoint and compact, there is an ON-basis $\left(\varphi_{n}\right)_{n=1}^{\infty}$ of eigen-vectors of A. $A \varphi_{n}=\lambda_{n} \varphi_{n}$. We know $\left|\lambda_{n}\right| \rightarrow 0$ since A is compact, and $\lambda_{n} \geq 0$ since A is non-negative.

Existence: Set $B=\sum_{n=1}^{\infty} \sqrt{\lambda_{n}} P_{n}$ where $P_{n} x=\left(\varphi_{n}, x\right), \varphi_{n}$. It is easily shown that $B^{2}=A$ and that B is compact and non-negative.

Observe that from the construction of B, it follows that if ψ is a vector such that $A \psi=\lambda \psi$, then $B \psi=\sqrt{\lambda} \psi$.

Uniqueness: Suppose that C is a non-negative compact operator such that $C^{2}=A$. We need to $\overline{\text { show that } C}=B$, where B is the operator constructed above. Since C is compact and self-adjoint, there is an ON-basis $\left(\psi_{n}\right)_{n=1}^{\infty}$ such that $C \psi_{n}=\mu_{n} \psi_{n}$. Now observe that

$$
A \psi_{n}=C^{2} \psi_{n}=C\left(\mu_{n} \psi_{n}\right)=\mu_{n}^{2} \psi_{n}
$$

so ψ_{n} is an eigenvector of A with eigenvalue μ_{n}^{2}. It follows that $B \psi_{n}=\sqrt{\mu_{n}^{2}} \psi_{n}=\mu_{n} \psi_{n}=C \psi_{n}$. (We know that $\sqrt{\mu_{n}^{2}}=\mu_{n}$ since C must be non-negative, which implies that $\mu_{n} \geq 0$.)

Problem 1: Consider the Hilbert space $H=\mathbb{C}^{n}$. Let $A \in \mathcal{B}(H)$, let $\left(e^{(j)}\right)_{j=1}^{n}$ be the canonical basis, and let A have the representation

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
$$

in the canonical basis. We define the Hilbert-Schmidt norm of A as

$$
\|A\|_{\mathrm{HS}}=\left(\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}
$$

(a) Let $\left(\varphi^{(j)}\right)_{j=1}^{n}$ be any ON-basis for H. Show that $\|A\|_{\mathrm{HS}}^{2}=\sum_{j=1}^{n}\left\|A \varphi^{(j)}\right\|^{2}$.
(b) Show that $\|A\| \leq\|A\|_{\mathrm{HS}} \leq \sqrt{n}\|A\|$ for any $A \in \mathcal{B}(H)$.
(c) Find $G, H \in \mathcal{B}(H)$ such that $\|G\|_{\mathrm{HS}}=\|G\|$ and $\|H\|_{\mathrm{HS}}=\sqrt{n}\|H\|$.

Solution:

(a) Let $r^{(i)}$ denote the i 'th row of A. Then

$$
\sum_{j=1}^{n}\left\|A \varphi^{(j)}\right\|^{2}=\sum_{j=1}^{n} \sum_{i=1}^{n}\left\|\left(r^{(i)}, \varphi^{(j)}\right)\right\|^{2}=\{\text { Parseval }\}=\sum_{i=1}^{n}\left\|r^{(i)}\right\|^{2}=\|A\|_{\mathrm{HS}}^{2}
$$

(b) For any x a simple application of Cauchy-Schwartz yields

$$
\|A x\|^{2}=\sum_{i=1}^{n}\left\|\left(r^{(i)}, x\right)\right\|^{2} \leq \sum_{i=1}^{n}\left\|r^{(i)}\right\|^{2}\|x\|^{2}=\|A\|_{\mathrm{HS}}^{2}\|x\|^{2}
$$

It follows that $\|A\| \leq\|A\|_{\text {HS }}$. Next, let i be such that $\left\|r^{(i)}\right\|=\max _{j}\left\|r^{(j)}\right\|$. Then

$$
\|A\|_{\mathrm{HS}}^{2}=\sum_{j=1}^{n}\left\|r^{(j)}\right\|^{2} \leq n\left\|r^{(i)}\right\|^{2}=n\left\|A^{*} e_{i}\right\|^{2} \leq n\left\|A^{*}\right\|=n\|A\|,
$$

where e_{i} denotes the i 'th canonical basis vector.
(c) For instance, let G be the matrix consisting of all ones. Then, the singular value decomposition of G is $G=\sqrt{n} g g^{*}$, where $g=(1,1,1, \ldots, 1) / \sqrt{n}$. Consequently, $\|G\|=\sqrt{n}$. It is a trivial computation to shot that $\|G\|_{\mathrm{HS}}=\sqrt{n}$.

Next, let H be the identity matrix. Then obviously $\|H\|=1$ since $\|H x\|=\|x\|$ for any vector x. But $\|H\|_{\text {HS }}=\sqrt{n}$.

Problem 2: Let H be a separable Hilbert space, and let $A \in \mathcal{B}(H)$. Suppose that H has an ON-basis $\left(\varphi^{(j)}\right)_{j=1}^{\infty}$ such that

$$
\sum_{j=1}^{\infty}\left\|A \varphi^{(j)}\right\|^{2}<\infty
$$

Prove that if $\left(\psi^{(j)}\right)_{j=1}^{\infty}$ is any other ON-basis, then

$$
\sum_{j=1}^{\infty}\left\|A \varphi^{(j)}\right\|^{2}=\sum_{j=1}^{\infty}\left\|A \psi^{(j)}\right\|^{2}
$$

Solution: Set

$$
\alpha_{j i}=\left(A \varphi^{(j)}, \psi^{(i)}\right)=\left(\varphi^{(j)}, A^{*} \psi^{(i)}\right)
$$

and

$$
\beta_{i k}=\left(A^{*} \psi^{(i)}, \psi^{(k)}\right)=\left(\psi^{(i)}, A \psi^{(k)}\right) .
$$

The proof consists of four applications of Parseval:

$$
\sum_{j=1}^{\infty}\left\|A \varphi^{(j)}\right\|^{2}=\sum_{j=1}^{\infty} \sum_{i=1}^{\infty}\left|\alpha_{j i}\right|^{2}=\sum_{i=1}^{\infty}\left\|A^{*} \psi^{(i)}\right\|^{2}=\sum_{i=1}^{\infty} \sum_{k=1}^{\infty}\left|\beta_{i k}\right|^{2}=\sum_{k=1}^{\infty}\left\|A \psi^{(k)}\right\|^{2} .
$$

Note that the interchanges of summation order are permissible as all terms are non-negative.

Problem 3: Consider the linear space $L=\mathbb{R}^{2}$. Define for $x=\left(x_{1}, x_{2}\right) \in L$ the seminorms

$$
p_{1}(x)=\left|x_{1}\right|, \quad p_{2}(x)=\left|x_{2}\right| .
$$

Construct for $x \in L, j \in\{1,2\}$, and $\varepsilon \in(0, \infty)$, the sets

$$
\mathcal{B}_{x, j, \varepsilon}=\left\{y \in L: p_{j} j(x-y)<\varepsilon\right\} .
$$

Describe these sets geometrically. What is the topology generated by the collection of semi-norms $\left\{p_{1}\right\}$? Is it Hausdorff? What is the topology generated by the collection of semi-norms $\left\{p_{1}, p_{2}\right\}$? Is it Hausdorff?

Solution:

For $x=\left(x_{1}, x_{2}\right)$, the set $\mathcal{B}_{x, 1, \varepsilon}$ is a vertical strip of width 2ε centered around x_{1}. The set $\mathcal{B}_{x, 2, \varepsilon}$ is a horizontal strip of width 2ε centered around x_{2}.

The topology \mathcal{T}_{1} generated by $\left\{p_{1}\right\}$ is the topology on the real line. In other words, $\Omega \in \mathcal{T}_{1}$ iff $\Omega=\Omega_{1} \times \mathbb{R}$ where Ω_{1} is an open set on the line. This topology is not Hausdorff. For a counter-example, set $x=(0,0)$ and $y=(0,1)$. Then if $\Omega \in \mathcal{T}_{1}$ we have

$$
x \in \Omega \quad \Leftrightarrow \quad y \in \Omega
$$

As far as \mathcal{T}_{1} is concerned, the points x and y are not distinct.
The topology generated by $\left\{p_{1}, p_{2}\right\}$ has as its base \mathcal{B} intersections of open sets in \mathcal{T}_{1} and \mathcal{T}_{2}. This means that \mathcal{B} consists of all open rectangles in the plane. These generate the standard topology on \mathbb{R}^{2}, which is Hausdorff.

