## Homework set 4 - APPM5450 — Spring 2017

From the textbook: 8.15.

Problem 1: Consider the Hilbert space $H=l^{2}(\mathbb{N})$; let $e_{n}$ denote the canonical basis vectors. Which of the following sequences converge weakly? Which have convergent subsequences?
(a) $x_{n}=n e_{n}$.
(b) $y_{n}=n^{-1 / 2} \sum_{j=1}^{n} e_{j}$.
(c) $x_{n}=e_{n}+e_{m}$ where $m=1+\bmod (n, 2)$.

Problem 2: Consider the Hilbert space $H=L^{2}([-\pi, \pi])$, and the sequence of functions $\varphi_{n}(x)=$ $x^{2} \sin (n x)$. Does $\left(\varphi_{n}\right)_{n=1}^{\infty}$ converge strongly in $H$ ? Does $\left(\varphi_{n}\right)_{n=1}^{\infty}$ converge weakly in $H$ ? If you answer yes to either question, specify the limit.

Problem 3: Let $A$ denote a self-adjoint operator on a Hilbert space $H$. Let $u$ denote an element of $H$ and set $u_{n}=e^{i n A} u$. Prove that $\left(u_{n}\right)_{n=1}^{\infty}$ has a weakly convergent subsequence.

Problem 4: Let $H_{1}$ and $H_{2}$ be two Hilbert spaces. Let $U: H_{1} \rightarrow H_{2}$ be a unitary operator, and let $A_{1} \in \mathcal{B}\left(H_{1}\right)$ be a self-adjoint operator. Define the operator $A_{2} \in \mathcal{B}\left(H_{2}\right)$ by $A_{2}=U A_{1} U^{-1}$. Prove that $A_{2}$ is self-adjoint.

Problem 5 (optional): Consider the Hilbert space $H=L^{2}([-\pi, \pi])$, and let $\mathcal{P}$ denote the set of trigonometric polynomials (which is dense in $H$. For $u \in \mathcal{P}$, let $A$ denote the operator $A u=100 u+18 u^{\prime \prime}+u^{\prime \prime \prime \prime}$. Prove that

$$
\sup _{u \in \mathcal{P},\|u\|=1}\langle A u, u\rangle=\infty .
$$

Conclude that $A$ cannot be extended to a bounded linear operator on $H$. Prove that for $u, v \in \mathcal{P}$, $\langle A u, v\rangle=\langle u, A v\rangle$. Determine

$$
\inf _{u \in \mathcal{P},\|u\|=1}\langle A u, u\rangle .
$$

Prove that

$$
\langle u, v\rangle_{A}=\langle A u, v\rangle
$$

is a bilinear form on $\mathcal{P}$. Prove that on $\mathcal{P}$, the norm $\|\cdot\|_{A}$ induced by $\langle\cdot, \cdot\rangle_{A}$ is equivalent to the norm

$$
\|u\|_{H^{2}(\mathbb{T})}=\sqrt{\|u\|_{L^{2}(\mathbb{T})}^{2}+\left\|u^{\prime \prime}\right\|_{L^{2}(\mathbb{T})}^{2}} .
$$

Conclude that the closure of $\mathcal{P}$ under the norm $\|\cdot\|_{A}$ is the space $H^{2}(\mathbb{T})$ (as defined in Section 7.2).

