Homework set 3 - APPM5450, Spring 2017

From the textbook: 8.6. Optional: 8.5.
Problem 1: Let H be a Hilbert space, and let $\left(\varphi_{n}\right)_{n=1}^{\infty}$ denote an orthonormal basis for H. Given a bounded sequence of complex number $\left(\lambda_{n}\right)_{n=1}^{\infty}$, define the operator A by setting

$$
A u=\sum_{n=1}^{\infty} \lambda_{n} \varphi_{n}\left\langle\varphi_{n}, u\right\rangle .
$$

(a) Prove that $\|A\|=\sup _{n}\left|\lambda_{n}\right|$.
(b) Prove that $A^{*} u=\sum_{n=1}^{\infty} \bar{\lambda}_{n} \varphi_{n}\left\langle\varphi_{n}, u\right\rangle$. Conclude that A is self-adjoint iff all λ_{n} 's are real. When is A skew-symmetric? When is A non-negative / positive / coercive?

Problem 2: Consider the Hilbert space $H=L^{2}([-\pi, \pi])$, and the operator $A \in \mathcal{B}(H)$ defined by $[A u](x)=|x| u(x)$. Prove that A is self-adjoint and positive, but not coercive. Prove that

$$
\langle u, v\rangle_{A}=\langle A u, v\rangle
$$

is an inner product on H, but that the topology generated by (the norm generated by) this inner product is not equivalent to the topology generated by the L^{2}-norm.

Problem 3: Set $H=\ell^{2}(\mathbb{Z})$ and let R denote the right-shift operator (so that if $y=R x$, then $y_{n}=x_{n-1}$). Construct R^{*}. Prove that $R R^{*}=R^{*} R=I$, which is to say that R is "unitary." (Is either the right or the left-shift operator on $\ell^{2}(\mathbb{N})$ unitary?)

Problem 4: Consider the Hilbert space $L^{2}(\mathbb{T})$. Let k denote a continuous function on \mathbb{T}^{2} that takes on complex values. Let A denote the operator $[A u](x)=\int_{\mathbb{T}} k(x, y) u(y) d y$. Prove that $\left[A^{*} u\right](x)=\int_{\mathbb{T}} \overline{k(y, x)} u(y) d y$. Conclude that A is self-adjoint iff $k(x, y)=\overline{k(y, x)} \forall x, y \in \mathbb{T}$.

