Solutions for Homework 2 — APPM5450 — Spring 2017

Exercise 7.13: Set I = [0, 1] and consider the equation

(1) U = —Ugg, xel, t >0,

for a complex valued function u = u(z,t) with homogeneous boundary conditions,
(2) u(0,t) = u(1l,t) =0,

and initial condition

(3) u(,0) = f(x).

Set

en(z) = V2 sin(nz).

Then (e,,)5%; forms an ON-basis for L2(I). We look for a solution

(4) uz,t) =Y an(t) en(2)
n=1

Inserting (4) into (1) and (3), we find that «,, must satisfy
ial, =n?ap, an(0) = fn,
where f,, = (en, f). The solution is
an(t) = fn et

Since | (t)| = | fn| for any ¢, it follows directly from Parseval that
o0
lu(®)l72(r) = Z\an =Dl = 11517,
n=1

and that (using that the cosines also form an ON-set)

a2y = 1S e ™ 0 v/Z cos(na) |22y Z In fal? = 15211
n=1

For a direct proof, set v = Re(u) and w = Im(u) so that u = v +iw. Then (1) takes the form

VUt = —Wgy Wt = Vgg-

d 1 ) d 1 ) ) 1
— | ul dx:/ (v +w )dx:2/ (vpv 4+ wpw) de
dt/o dt Jo 0

1 1
:2/ (—wmv—l—vmw)d:z:2/(wxvz—vxwx)da@:().
0 0

The second to last step was partial integration where the boundary terms vanish due to (2).
Analogously,

d 1 d 1 1
dt/o |ux|2dx:dt/0 (vg—l—wi)d:c:2/0 (Ut Vg + Wy wy) dx

1 1
= 2/ (_Ut Vgr — Wt wxx) de = 2/ (—Ut wy + wy vt) dr = 0.
0 0

In the second calculation we used differentiation, (2) takes the form

0(0,8) = v(1,6) = wi(0,8) = wy(L,H) =0, >0,
1
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Exercise 8.3: Let P and () be orthogonal projections. Set M = ran(P) and N = ran(Q). TFAE:

|Pz|| < [|Qz||  Vz
(z, Px) < (z, Qx) YV

(a) = (b): Assume M C N. Then for any z, Px € M C N, so QPx = Px.

(b) = (a): Assume QP = P. Pick y € M. Then y = Pz for some x. Then Qy = QPx = Px =y
soy € N.

(a) < (o)

N+ cC Mt

Py=0 VYye N+t
P(I-Q)x=0 Vz
P=PQ

te e

(c) = (d): Assume PQ = P. Since ||P|| <1 we have ||Pz|| = ||PQz|| < ||Qz|| for any x.

(d) = (a): Assume that (a) is false. Then there is an x € M\N. Since x € M we have x = Pz
and so
1P]|? = [|z]* = [|Qz + (I — Q)z|* = [|Qx[]* +[|(I — Q).
Now observe that |[(I — Q)z|| > 0 since = ¢ N. Consequently,
1Qz|l” = [|Pz|[” — [|( — Q)zl|* < || Pz|]”

so (d) cannot hold true.

(d) < (e): Simply observe that (v, Px) = (x, P?z) = (Pz, Pr) = ||Pz||?> and analogously
(z, Qu) = [|Qu|I*.

Note: You may want to draw a diagram over the implications to convince yourself that all equiv-
alencies have been proven.
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Exercise 8.4: First we prove that P, — I strongly. Fix any z € H. Since |J,-, ran(P,) = H,
we know that x € ran(Py) for some specific N. Then, since ran(F,) C ran(F,+1), we see that
x € ran(P,,) for any m > N. Consequently, P,z = z for any m > N so P,x — x (very rapidly!).

Next suppose that ||I — P,|| — 0. Then there is some N such that ||I — Py|| < 1/2. Now observe
that I — Py is itself an orthogonal projection (onto ker(Py)) so it can only have norms 0 and 1.
It follows that ||I — Py|| = 0, which is to say that Py = I. Since H = ran(Py) C ran(Pyy1) C
ran(Pn42) C -+ - we see that P, = I for any n > N.

Problem 1: Let T'(t) denote the semigroup defined in Section 7.3 of the textbook. Prove that
T(t) — I strongly as t \, 0. Prove that 7'(¢) does not converge in norm.

Solution: We consider a slightly more general problem. Let (e,)52; be an ON-basis for a Hilbert
space H, and consider for ¢ > 0 the operator

TWf =3 fuc ™ e
n=1

We will show that as ¢ \, 0, T'(t) — I strongly but not in norm.

To show T'(t) — I strongly, fix f € H. Fix ¢ > 0. Set f, = (en, f) and pick N such that
>one N1 [ fal? < 2. Then by Parseval

N 2 2 > 2 2
TS = fIP =D | =0 + 3 e = 1)
n=1 n=N+1
N ) 9 00 N ) 9
BTGV D DI ITALES B T A Gt I ES
n=1 n=N+1 n=1

Since only finitely many terms depend on ¢, we can now easily take the limit as t \, 0,
limsup ||T(t)f — f]|* < 4%
t\,0

Since € was arbitrary, we see that limy o [|T(t)f — f|| = 0.

To show that T'(t) does not converge to I in norm, we simply observe that for any ¢ > 0

IT(6) = || = sup [|(T(t) = I) enl| = sup e — 1] = 1.
n n
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Problem 2: Suppose P is a projection on a Hilbert space H. TFAE:

(1) P is orthogonal, i.e. ker(P) = ran(P) .
(2) P is self-adjoint, i.e. (Pz, y) = (x, Py) Vz,y.
(3) ||P|| =0or 1.

Proof:

(a) = (b): Assume ker(P) = ran(P)*. Pick any z,y € H. Then
(Pz,y) =( Lz , Py+ (I —-Py) = (Pz, Py) = (Pr+ (I - P)z, Py) = (z, Py).
~~ ————

eran(p) eker(p)

(b) = (c): Assume that (b) holds. Then for any =,
|1Pa||* = (Px, Px) = (P’x, ) = (P, z) < || Pal|||«|l,

so |[|P]| < 1. Obviously it is possible for ||P|| to be zero. We need to prove that the only possible
non-zero value of ||P|| is one. To this end, note that if P # 0, then ran(P) # {0}. Now observe
that if = is a non-zero element in ran(P), we have Pz =z so ||P|| > 1.

(¢) = (a): Assume that (a) does not hold. Then there exist = € ran(P) and y € ker(P) such that

(z,y) #0. Set a = (z, y)/|(z, y)| and z = ay. Then z € ker(P) and (z, z) = |(z, y)| € R4. Set
w=x— zt.
Then ||Pw|| = ||z||, and
lwll? = [l = 2 (z, 2) + £ [|2]]*.
For small ¢, we see that ||w|| < ||z|| = ||Pw]|| so ||P]| > 1.

No solution is given for Problem & since the problem itself outlines precisely how to solve it — just
fill in the details.



