APPM5450 — Applied Analysis: Section exam 3 — Solutions 8:30 – 9:50, April 23, 2014. Closed books.

Problem 1: (20p) Let m denote Lebesgue measure on \mathbb{R} , and let \mathcal{L} denote the set of Lebesgue measurable sets, as usual. Which of the following functions n are **not** measures on $(\mathbb{R}, \mathcal{L})$:

- (a) $n(\Omega) = 2m(\Omega)$
- (b) $n(\Omega) = (m(\Omega))^2$
- (c) $n(\Omega) = 1 + m(\Omega)$
- (d) $n(\Omega) = m(2\Omega)$, where $2\Omega = \{2x : x \in \Omega\}$
- (e) $n(\Omega) = \int_{\Omega} e^x dm(x)$
- (f) $n(\Omega) = \int_{\Omega} \sin(x) dm(x)$

Motivate briefly, but only for those that are *not* measures.

Solution:

- (b) is not a measure since it is not additive. Set, e.g, $\Omega_1=(0,1)$ and $\Omega_2=(1,2)$. Then $n(\Omega_1)+n(\Omega_2)=1^2+1^2=2$, but $n(\Omega_1\cup\Omega_2)=(1+1)^2=4$.
- (c) is not a measure since $n(\emptyset) = 1$.
- (f) is not a measure since it can take on negative values. For instance $n((\pi, 2\pi)) = -2$.

Problem 2: (10p) For which of the following functions is the Lebesgue integral defined w.r.t. Lebesgue measure on the specified set X. (No motivation necessary.)

- (a) $f(x) = \sin(x)$ on $X = \mathbb{R}$.
- (b) $f(x) = e^x$ on $X = \mathbb{R}$.
- (c) f(x) = 1/x (with f(0) = 0) on X = (-1, 1).
- (d) f(x) = 1/x on $X = (0, \infty)$.

Solution:

(a) and (c) do not have a well-defined integrals since $\int f_+ = \int f_- = \infty$.

Problem 3: (30p) The following are worth 10 points each.

(a) Evaluate
$$\int_0^\infty \left(\frac{\sin(x)}{x}\right)^2 dx$$
.

- (b) Set $f_n(x) = \cos(nx) \frac{\sin(x/2)}{x}$. What is its Fourier transform \hat{f}_n ?
- (c) Set $h_N = \sum_{n=1}^N f_n$, where f_n is defined as in (b). Does the sequence $(h_N)_{N=1}^{\infty}$ converge in $\mathcal{S}^*(\mathbb{R})$? If yes, then specify the limit and motive briefly. If no, then motivate briefly.

Hint: The function $g = \chi_{(-1/2,1/2)}$ has the Fourier transform $\hat{g}(t) = \sqrt{\frac{2}{\pi}} \frac{\sin(t/2)}{t}$.

Solution:

(a) The idea here is to observe that the integral is essentially the L^2 norm of the function \hat{g} specified in the hint. Then observe that by the Parceval equality, $||\hat{g}||_{L^2} = ||g||_{L^2}$, and $||g||_{L^2}$ is trivially seen to equal 1. To be precise,

$$\begin{split} \int_0^\infty \left(\frac{\sin(x)}{x}\right)^2 \, dx &= \int_0^\infty \left(\frac{\sin(y/2)}{y/2}\right)^2 \, dy/2 = 2 \int_0^\infty \left(\frac{\sin(y/2)}{y}\right)^2 \, dy \\ &= \int_{-\infty}^\infty \left(\frac{\sin(y/2)}{y}\right)^2 \, dy = ||\sqrt{\frac{\pi}{2}} \, \hat{g}||_{L^2}^2 = \frac{\pi}{2} \, ||\hat{g}||_{L^2}^2 = \frac{\pi}{2}. \end{split}$$

(b) First write out $\cos(nx)$ as exponentials:

$$f_n(x) = \cos(nx)\sqrt{\pi/2}\hat{g}(x) = (1/2)(e^{inx} + e^{-inx})\sqrt{\pi/2}\hat{g}(x)$$

Now use that multiplication by an exponential corresponds to a shift in Fourier space:

$$\hat{f}_n(x) = (1/2)(\tau_{-n} + \tau_n)\sqrt{\pi/2}\hat{g}(x) = (1/2)(\tau_{-n} + \tau_n)\sqrt{\pi/2}g(x),$$

since $\mathcal{F}^2 = R$, and Rq = q. To summarize,

$$\hat{f}_n = \sqrt{\pi/8} \left(\chi_{(-n-1/2,-n+1/2)} + \chi_{(n-1/2,n+1/2)} \right).$$

(c) Use that (h_N) converges iff (\hat{h}_N) converges (since \mathcal{F} is an isomorphism on \mathcal{S}^*). We easily find that

$$\hat{h}_N \to \sqrt{\pi/8} \left(\chi_{(-\infty,-1/2)} + \chi_{(1/2,\infty)} \right) = \sqrt{\pi/8} \left(1 - \chi_{(-1/2,1/2)} \right).$$

Applying \mathcal{F}^* , we find that $h_N \to h$, where

$$h(x) = \sqrt{\frac{\pi}{8}} \left(\sqrt{2\pi}\delta - \hat{g}(x) \right) = \sqrt{\frac{\pi}{8}} \left(\sqrt{2\pi}\delta - \sqrt{\frac{2}{\pi}} \frac{\sin(x/2)}{x} \right) = \frac{\pi}{2} \delta - \frac{\sin(x/2)}{2x}.$$

Problem 4: (20p) Suppose that $f \in H^3(\mathbb{R}^d)$, where d is a positive integer, and that u satisfies

$$-\Delta u + u = f \qquad \text{on } \mathbb{R}^d,$$

where Δ denotes the Laplace operator as usual,

$$\Delta u = \sum_{j=1}^{d} \frac{\partial^2 u}{\partial x_j^2}.$$

For which $t \geq 0$ do we know that $u \in H^t(\mathbb{R}^d)$? Can you for any d say for sure that $u \in C_0(\mathbb{R}^d)$?

Solution: We see that $\hat{u}(t) = (1 + |t|^2)^{-1} \hat{f}(t)$, which immediately implies that $u \in H^{3+2}(\mathbb{R}^d) = H^5(\mathbb{R}^d)$. Since the Sobolev spaces are nested, we find: $u \in H^t$ for $0 \le t \le 5$

Recall that $u \in H^s(\mathbb{R}^d)$ implies that $u \in C_0(\mathbb{R}^d)$ provided that s > d/2. Here s = 5, so $u \in C_0$ provided that d < 10.

Problem 5: (20p) Below, four different distributions $T \in \mathcal{S}^*(\mathbb{R})$ are specified. In each case, give its Fourier distribution \hat{T} . Simplify \hat{T} as far as you can, and provide a *brief* motivation.

- (a) Set T(x) = x.
- (b) Set $T(x) = x e^{-x^2/2}$.
- (c) Fix two functions $\psi, \chi \in \mathcal{S}(\mathbb{R})$, and let T denote their convolution, $T(x) = [\psi * \chi](x)$.
- (d) Set f(x) = x, let $S = \delta'$ denote the derivative of the Dirac δ -function, and define the product of f and S as T = f S.

Solution:

- (a) We have $\mathcal{F}^*(\delta) = \beta$ where $\beta = 1/\sqrt{2\pi}$. Then $\mathcal{F}^*(\delta')(x) = -ix\beta = -i\beta T(x)$. Then $\delta' = -i\beta \hat{T}$ and so $\hat{T} = i\sqrt{2\pi}\delta'$.
- (b) Set $g(x) = e^{-x^2/2}$. Recall that $\hat{g} = g$. Then

$$\mathcal{F}[xe^{-x^2/2}](t) = -\mathcal{F}[g'](t) = -it\,\hat{g}(t) = -it\,g(t) = -it\,e^{-t^2/2}.$$

- (c) According to a theorem in the syllabus, $\hat{T}(t) = \sqrt{2\pi} \,\hat{\psi}(t) \,\hat{\chi}(t)$.
- (d) First we simplify T. Note that $\langle T, \varphi \rangle = \langle \delta', f\varphi \rangle = -f'(0)\varphi(0) f(0)\varphi'(0) = -\varphi(0)$, so $T = -\delta$. Then $\hat{T} = -1/\sqrt{2\pi}$.