APPM5450 — Applied Analysis: Section exam 3

8:30 – 9:50, April 23, 2014. Closed books.

Problem 1: (20p) Let m denote Lebesgue measure on \mathbb{R} , and let \mathcal{L} denote the set of Lebesgue measurable sets, as usual. Which of the following functions n are **not** measures on $(\mathbb{R}, \mathcal{L})$:

- (a) $n(\Omega) = 2m(\Omega)$
- (b) $n(\Omega) = (m(\Omega))^2$
- (c) $n(\Omega) = 1 + m(\Omega)$
- (d) $n(\Omega) = m(2\Omega)$, where $2\Omega = \{2x : x \in \Omega\}$
- (e) $n(\Omega) = \int_{\Omega} e^x dm(x)$
- (f) $n(\Omega) = \int_{\Omega} \sin(x) dm(x)$

Motivate briefly, but only for those that are *not* measures.

Problem 2: (10p) For which of the following functions is the Lebesgue integral defined w.r.t. Lebesgue measure on the specified set X. (No motivation necessary.)

- (a) $f(x) = \sin(x)$ on $X = \mathbb{R}$.
- (b) $f(x) = e^x$ on $X = \mathbb{R}$.
- (c) f(x) = 1/x (with f(0) = 0) on X = (-1, 1).
- (d) f(x) = 1/x on $X = (0, \infty)$.

Problem 3: (30p) The following are worth 10 points each.

- (a) Evaluate $\int_0^\infty \left(\frac{\sin(x)}{x}\right)^2 dx$.
- (b) Set $f_n(x) = \cos(nx) \frac{\sin(x/2)}{x}$. What is its Fourier transform \hat{f}_n ?
- (c) Set $h_N = \sum_{n=1}^N f_n$, where f_n is defined as in (b). Does the sequence $(h_N)_{N=1}^{\infty}$ converge in $\mathcal{S}^*(\mathbb{R})$? If yes, then specify the limit and motive briefly. If no, then motivate briefly.

Hint: The function $g = \chi_{(-1/2,1/2)}$ has the Fourier transform $\hat{g}(t) = \sqrt{\frac{2}{\pi}} \frac{\sin(t/2)}{t}$.

Problem 4: (20p) Suppose that $f \in H^3(\mathbb{R}^d)$, where d is a positive integer, and that u satisfies

$$-\Delta u + u = f \qquad \text{on } \mathbb{R}^d,$$

where Δ denotes the Laplace operator as usual,

$$\Delta u = \sum_{j=1}^{d} \frac{\partial^2 u}{\partial x_j^2}.$$

For which $t \geq 0$ do we know that $u \in H^t(\mathbb{R}^d)$? Can you for any d say for sure that $u \in C_0(\mathbb{R}^d)$?

Problem 5: (20p) Below, four different distributions $T \in \mathcal{S}^*(\mathbb{R})$ are specified. In each case, give its Fourier distribution \hat{T} . Simplify \hat{T} as far as you can, and provide a *brief* motivation.

- (a) Set T(x) = x.
- (b) Set $T(x) = x e^{-x^2/2}$.
- (c) Fix two functions $\psi, \chi \in \mathcal{S}(\mathbb{R})$, and let T denote their convolution, $T(x) = [\psi * \chi](x)$.
- (d) Set f(x) = x, let $S = \delta'$ denote the derivative of the Dirac δ -function, and define the product of f and S as T = f S.